Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting information

Growth of Submillimeter SrTaO₂N Single Crystals by an NH₃-Assisted SrCl₂ Flux Method

*Ginji Harada,*¹ *Ryosuke Sinmyo,*² *Shuhou Maitani,*² *Tomoaki Watanabe,*¹ *Mirabbos Hojamberdiev,*³ *Kitaru Suzuki,*¹ *and Hajime Wagata*^{1*}

¹ Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan

² Department of Physics, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan

³ Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany

Tel.: +81-44-934-7208

Fax: +81-44-934-7906

*E-mail address of corresponding author: <u>wagata@meiji.ac.jp</u>

Synthesis	Raw	Temp.	Crystal	Remark	Ref.
method	Material	Atmosphere	size		
Reactive	SrCO ₃	950°C	25 µm	Epitaxial	1
inorganic vapor	$SrCl_2 \cdot 6H_2O$	NH ₃	$\times 0.5 \text{ cm}$	layer	
deposition			$\times 1 \text{ cm}$	on LiTaO ₃	
method				single	
				crystals	
Nitridation	SrCl ₂ -flux-	950°C	25 µm	Porous	2
	grown	NH ₃	(Max.)	polycrystal	
	$Sr_2Ta_2O_7$				
Topotactic	SrCl ₂ -flux-	950°C	300 nm	Single	3
nitridation	grown	NH ₃	×198 nm	crystal	
	$Sr_2Ta_2O_7$		\times 30 nm		
			(Avg.)		
BaCN ₂ flux	BaCN ₂	900°C	3.7 µm	Single	4
method	SrTaO ₂ N	N_2	(Max.)	crystal	
				Sr ₁₋	
				$_{x}Ba_{x}TaO_{2}N$	
				$(0.04 \le x \le$	
				0.23)	
One pot flux	Ta_2O_5 , $SrCl_2$,	950°C	124 nm	Single	5
assisted	NaOH	NH_3	(Avg.)	crystal	
nitridation		2		2	
NH ₃ -assisted	Ta ₂ O ₅ , SrCl ₂	1200°C	300 µm	Single	This
SrCl ₂ flux method		NH ₃	(Max.)	crystal	work

Table S1. Synthesis conditions and crystal sizes of SrTaO₂N crystals reported in various literatures.

Run	Holding	Holding	Cooling	Solute	Flux & Solute	Solute
No.	temp.	time	rate	Ta ₂ O ₅	SrCl ₂	conc.
	/°C	/h	$/^{o}C \cdot h^{-1}$	/g	/g	(mol%)
1	1200	10	150	0.2443	5.7557	1.5
2	1150	10	150	0.2443	5.7557	1.5
3	1050	10	150	0.2443	5.7557	1.5
4	950	10	150	0.2443	5.7557	1.5
5	850	10	150	0.2443	5.7557	1.5
6	750	10	150	0.2443	5.7557	1.5
7	650	10	150	0.2443	5.7557	1.5
8	1200	1	150	0.2443	5.7557	1.5
9	1200	0	150	0.2443	5.7557	1.5
10	1200	10	15	0.2443	5.7557	1.5
11	1200	10	150	0.1643	5.8357	1
12	1200	10	150	0.4762	5.5238	3
13	1200	10	150	0.9063	5.0937	6
14	1200	10	150	2.4642	3.5358	20
15	950	0	150	0.2443	5.7557	1.5
16	850	0	150	0.2443	5.7557	1.5
17	750	0	150	0.2443	5.7557	1.5

Table S2. Experimental conditions for SrCl₂ flux growth of SrTaO₂N crystals.

Figure S1. (a) Bright field TEM image and (b) SAED patterns of pulverized SrTaO₂N crystals grown by the NH₃-assisted SrCl₂ flux method (Run No.1).

EDX was performed in order to investigate the chemical compositions of the flux-grown SrTaO₂N crystals (Figure S1). Peaks of nitrogen (N), oxygen (O), tantalum (Ta), and strontium (Sr) were attributed to SrTaO₂N, peaks of carbon (C) and gold (Au) were attributed to carbon tape and gold sputtering for measurements, and an unidentified peak was caused by a sample chamber or a sample holder because it appeared at any cases.

Figure S2. EDX spectrum of crystals grown by an NH₃-assisted SrCl₂ flux method (Run No. 1).

The atomic ratio of Sr and Ta in the flux-grown SrTaO₂N crystals (Run No. 1) is given as Sr:Ta = 1.0:1.0 from the EDX spectrum (Figure S1). If we assume that oxidation states of all tantalum cations are five (Ta⁵⁺) in the SrTaO₂N crystal, its chemical formula is expressed as SrTaO_{3.5-1.5y}N_y, where y is nitrogen content in oxynitride and 3.5-1.5y is oxygen content, considering electrical neutrality. A chemical reaction formula during TG-DTA measurement is expressed as below because the sample after TG-

$$2 SrTaO_{3.5-1.5y}N_y + \frac{3y}{2}O_2 \rightarrow Sr_2Ta_2O_7 + yN_2$$
 DTA
analysis

was identified as Sr₂Ta₂O₇ without any impurities.

Since increment of the mass of the sample after TG-DTA is relevant to the mass of nitrogen released $y = \left(\frac{\Delta m}{3/2 \ M(O_2) - M(N_2)}\right) \times \frac{M(Sr_2Ta_2O_7)}{m(Sr_2Ta_2O_7)} \tag{1}$ sample, (1) nitrogen

content y in $SrTaO_{3.5-1.5y}N_y$ can be calculated from following formula (1):

where Δm is total mass change, M(O₂) and M(N₂) are molecular weights of oxygen (O₂) and nitrogen (N₂), *m*(Sr₂Ta₂O₇) is mass of the sample after TG-DTA, M(Sr₂Ta₂O₇) is formula weight of Sr₂Ta₂O₇. The total mass change Δm was calculated from the difference between mass at 400°C in the TG-DTA curve and that after the TG-DTA measurement, which is caused by transformation of SrTaO₂N to Sr₂Ta₂O₇ as the above chemical formula. Since Δm is 1.83 mg and *m*(Sr₂Ta₂O₇) is 51.31 mg, *y* is calculated to be 1.16. Therefore, chemical formula of the flux-grown SrTaO₂N crystal is "SrTaO_{1.76}N_{1.16}".

Figure S3. Mott-Schottky measurements of a SrTaO₂N single crystal grown by the NH₃-assisted SrCl₂ flux method (Run No.1).

Figure S4. SEM images of samples prepared by the NH_3 -assisted $SrCl_2$ flux method at holding temperatures of (a) 850°C, (b) 750°C, and (c) 650°C for 10 h with a solute concentration of 1.5 mol% and a cooling rate of 150°C h⁻¹ (Run Nos. 5–7).

Flux evaporation ratio (evap %) was calculated using the following formula:

$$evap (\%) = \frac{m_{SrCl2, Evap}}{m_{SrCl2, B}} \times 100$$

= $\frac{m_{SrCl2, B} - m_{SrCl2, A}}{m_{SrCl2, B}} \times 100$
= $\frac{m_{SrCl2, B} - (m_{all, A} - m_{SrTaO2N})}{m_{SrCl2, B}} \times 100$ (S1)

where $m_{\text{SrCl2,Evap}}$ is mass of SrCl₂ flux evaporated during the reaction, $m_{\text{SrCl2,B}}$ is mass of SrCl₂ flux before the reaction, $m_{\text{SrCl2,A}}$ is mass of SrCl₂ flux after the reaction, $m_{\text{all,A}}$ is mass of all samples including SrCl₂ flux and product (SrTaO₂N) after the reaction, m_{SrTaO2N} is mass of resulting product (SrTaO₂N) after the reaction.

All the masses were measured by a precision valance (XS205, METTLER TOLEDO) with an accuracy of 0.01 mg. $m_{SrCl2,B}$ is measured from amount of $SrCl_2$ before mixing. $m_{all,A}$ is calculated by subtracting the mass of the platinum boat from the total mass of the sample and the platinum boat after the reaction. $m_{SrTaO2N}$ is measured from amount of the obtained crystals.

Figure S5. XRD patterns of pulverized crystals grown by the NH_3 -assisted $SrCl_2$ flux method at a holding temperature of 1200°C for 10 h with a solute concentration of 1.5 mol% and a cooling rate of 15°C h⁻¹ (Run No.10). The XRD pattern of tetragonal $SrTaO_2N$ (ICDD PDF 01-083-9147) is shown for reference.

Figure S6. Low- and high-magnification SEM images of samples prepared by the NH_3 -assisted $SrCl_2$ flux method at a holding temperature of 1200°C for 10 h with a solute concentration of 1.5 mol% at a cooling rate of 15°C h⁻¹ (Run No.10).

Figure S7. XRD patterns of pulverized crystals grown by the NH₃-assisted SrCl₂ flux method at a holding temperature of 1200°C for 10 h with various solute concentrations at a cooling rate of 150°C h⁻¹ (Run Nos. 11–14). The XRD pattern of tetragonal SrTaO₂N (ICDD PDF 01-083-9147) is shown for reference.

Figure S8. SEM images of samples prepared by the NH_3 -assisted $SrCl_2$ flux method at holding temperature of 1200°C for 10 h with solute concentrations of (a) 1 mol%, (b) 3 mol%, (c) 6 mol%, and (d) 20 mol% and a cooling rate of 150°C h⁻¹ (Run Nos. 11–14).

REFERENCES

- 1. X. M. Xu, W. J. Wang, Y. M. Zhang, Y. Chen, H. T. Huang, T. Fang, Y. Li, Z. S. Li and Z. G. Zou, *Science Bulletin*, 2022, **67**, 1458-1466.
- Y. Mizuno, H. Wagata, K. Yubuta, N. Zettsu, S. Oishi and K. Teshima, *Crystengcomm*, 2013, 15, 8133-8138.
- 3. J. Fu and S. E. Skrabalak, *Angewandte Chemie International Edition*, 2017, **56**, 14169-14173.
- 4. A. Hosono, Y. Masubuchi, T. Endo and S. Kikkawa, *Dalton Transactions*, 2017, **46**, 16837-16844.
- K. Chen, J. Xiao, J. J. M. Vequizo, T. Hisatomi, Y. Ma, M. Nakabayashi, T. Takata, A. Yamakata, N. Shibata and K. Domen, *Journal of the American Chemical Society*, 2023, 145, 3839–3843.