Supporting Information

Additive-free selective oxidation of aromatic alcohols with molecular oxygen catalyzed by a mixed-valence polyoxovanadate-based metal–organic framework

Hongrui Tian,^{†, a} Runhan Li,^{†, b} Jun Miao, ^a Shuxia Liu, ^c Fengfeng Wang ^d & Zhiping Zheng^{*, a}

^{*a*} Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

^b School of Chemistry, South China Normal University, Guangzhou, Guangdong

510006, China

^c Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China

^d National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102600, China.

Corresponding author* E-mail: zhengzp@sustech.edu.cn

[†] These authors contributed equally.

Table of Contents

1. Computational details	S3
2. Crystallographic data and structure refinements	S5
3. PXRD patterns of V-Cd-MOF	S6
4. FTIR spectrum of V-Cd-MOF	S6
5. TGA curve of V-Cd-MOF	S7
6. The PXRD patterns of the V-Cd-MOF samples recovered after solvent immersion	S7
7. Protonated ligand [H ₂ bix] ²⁺ in the V-Cd-MOF	S8
8. The N_2 adsorption / desorption isotherms of V-Cd-MOF	S8
9. The hydrogen bonds in the V-Cd-MOF	S9
10. BVS results	S9
11. XPS spectra of V and Cd in V-Cd-MOF	S10
12. TEM image of the ground V-Cd-MOF	S10
13. The influences of reaction conditions on the selective oxidation of BA to BAD	S11
14. The solvent effect on the selective oxidation of BA to BAD	S12
15. FTIR spectra and PXRD patterns of recovered V-Cd-MOF	S12
16. XPS spectra of recovered V-Cd-MOF	S13
17. Comparison of different heterogeneous catalysts used for BA oxidation	S14
18. The coordination mode of Cd in Cd(Inic) ₂ and the PXRD patterns of Cd(Inic) ₂ \cdot 0.5 DMF	S15
19. The structure of $\{V^{IV}_{16}V^{V}_{18}O_{82}\}^{10}$ and the PXRD patterns of $K_{10}\{V^{IV}_{16}V^{V}_{18}O_{82}\}$ ·20H ₂ O	S15
20. The structure of $\{V_{16}\}$ -MOF and the PXRD patterns of the $\{V_{16}\}$ -MOF	S16
21. Structures of open-shell singlet and nonet $\{V_{15}\}$ clusters	S16
22. Assessing the possible conformation of a $\{V_{15}\}$ -bound BA molecule	S17
23. ¹ H-NMR spectra of the isolated aldehydes	S18
24. Selected bond lengths [Å] and angles [deg] for V-Cd-MOF	S24
25. References	S26

1. Computational details

Methods

All of the potential energy surface calculations were performed with (U)B3LYP-D3(BJ) functional. Full ground-state geometry optimizations were carried out at the SMD(acetonitrile)/(U)B3LYP-D3/Def2-SVP¹ level. Frequencies were calculated at the same theoretical level to verify the stationary points to be equilibriums or be transition states. Intrinsic reaction coordinate² (IRC) calculations were carried out to ensure the correct transition states connecting reactants and products. A better basis set system was employed to evaluate the single-point energy at the the SMD(acetonitrile)/(U)B3LYP-D3/Def2-TZVP³ level, and combined it with the gas phase Gibbs free energy corrected by the thermodynamic energy (see below) to assess the free energy at 393.15 K and 0.8 Mpa in this work. All of the above calculations were performed with Gaussian 09 program.

Correction of translational entropy in solution

We evaluated the electronic energy (Esol) with zero-point energy correction in solution. For each species, the Esol is defined through equation:

$$E_{sol} = E_{sol}^{pot} + E_{gas}^{v_0}$$

where E_{sol}^{pot} is the potential energy including non-electrostatic energy in solution and $E_{gas}^{v_0}$ represents the zero-point vibrational energy in the gas phase. In a bimolecular

process, such as the radical capture or dissociation, the entropy change must be taken into consideration because the entropy considerably decreases or increases.

In this case, Gibbs energy $\binom{G_{sol}^{o}}{sol}$ is evaluated as follows:

$$G_{sol}^{o} = H_0 - T(S_r^o + S_v^o + S_t^o)$$
$$= E^T + P\Delta V - T(S_r^o + S_v^o + S_t^o)$$
$$= E_{sol} + E_{therm} - T(S_r^o + S_v^o + S_t^o)$$

where ΔV is 0 in solution, E_{therm} is the thermal correction by translational, vibrational, and rotational movement, and S_r^o , S_v^o , and S_t^o are rotational, vibrational, and translational entropies, respectively. In general, the Sackur-Tetrode equation is used to evaluate translational entropy S_t^o . In solution, however, the usual Sackur-Tetrode equation cannot be directly applied to the evaluation of S_t^o , because the translational movement is suppressed very much in solution. In this context, the translational entropy was corrected with the method developed by Whitesides et al.,⁴ where the rotational entropy was evaluated in a normal manner. Thermal correction and entropy contributions of vibration movements to the Gibbs energy were evaluated with the frequencies calculated at 393.15 K and 0.8 MPa.

2. Crystallographic data and structure refinements

Name	V-Cd-MOF
Empirical formula	$C_{98}H_{114}N_{28}O_{75}Cl_2V_{30}Cd$
Formula weight	4595.67
Temperature (K)	296
Wave length (Å)	0.71073
Crystal system	monoclinic
Space group	C2/c
a (Å)	46.762(3)
b (Å)	12.8284(9)
c (Å)	29.674(2)
α (deg)	90
β (deg)	121.786(2)
γ (deg)	90
Volume (Å ³)	15131.0(18)
Z, Dcalc (Mg/m ³)	4, 2.017
Absorption coefficient (mm ⁻¹)	2.028
F (000)	9080.0
Crystal size (mm ³)	0.22 imes 0.21 imes 0.21
θ range (deg)	4.416 to 0.17
index range (deg)	$-55 \le h \le 55, -15 \le k \le 15, -35 \le l \le 35$
Reflections collected / unique	82167 / 13417 [Rint = 0.1306]
Data / restraints / parameters	13417 / 66 / 1059
Goodness-of-fit on F ²	1.011
R1, wR ₂ (I > 2σ (I))	0.0482, 0.0990
R1, wR ₂ (all data)	0.0982, 0.1188
Largest diff. peak and hole (e Å ⁻³)	2.08, -0.56

Table S1 Crystallographic data and structure refinement of V-Cd-MOF

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o| \cdot w R_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$

3. PXRD patterns of V-Cd-MOF

Fig. S1 The PXRD patterns of V-Cd-MOF.

4. FTIR spectrum of V-Cd-MOF

Fig. S2 The FTIR spectrum of V-Cd-MOF.

5. TGA curve of V-Cd-MOF

Fig. S3 The TGA curve of V-Cd-MOF.

6. The PXRD patterns of the V-Cd-MOF samples recovered after immersion

Fig. S4 The PXRD patterns of the V-Cd-MOF samples recovered after solvent immersion at 120 °C for 24 hours.

7. Protonated ligand [H₂bix]²⁺ in the V-Cd-MOF

Fig. S5 Protonated ligand $[H_2bix]^{2+}$ in the V-Cd-MOF.

8. The N₂ adsorption / desorption isotherms of V-Cd-MOF

Fig. S6 The N₂ adsorption / desorption isotherms of V-Cd-MOF (measured at 77K, $P_0 = 101$ kPa).

9. The hydrogen bonds in the V-Cd-MOF

Atoms involved	Length (Å)	Atoms involved	Length (Å)
N26…O7	2.970	N8…O36	2.906
N25…O15	2.750	N51…O16	3.214
N25…O11	3.193	N50…011	2.941
N50…O30	2.907		

 Table S2 The distance between non-hydrogen atoms in the hydrogen bond network of

V-	Cd.	-M	O	F
v -	UU.	-⊥▼∎	v	.

10. BVS results.

Table S3 BVS results for the vanadium ions and cadmium ions in V-Cd-MOF

Metal site	BVS cacl.	Assigned	Metal site	BVS cacl.	Assigned
		O.S.	 		O.S.
Cd	2.11	2	V8	4.03	4
V1	4.39	4	V9	4.86	5
V2	4.48	4	V10	4.92	5
V3	4.50	4	V11	4.89	5
V4	4.10	4	V12	5.01	5
V5	4.82	5	V13	4.35	4
V6	4.38	4	V14	4.02	4
V7	4.79	5	V15	4.92	5

11. XPS spectra of V and Cd in V-Cd-MOF

Fig. S7 XPS spectra of Cd and V in V-Cd-MOF.

12. TEM image of the ground V-Cd-MOF

Fig. S8 TEM image of the ground V-Cd-MOF.

Fig. S9 The influences of reaction conditions on the selective oxidation of BA to BAD using the V-Cd-MOF as catalyst. (a) The effect of reaction temperature. (b) The effect of O_2 pressure. (c) The effect of reaction time. Reaction conditions: BA (0.5 mmol), V-Cd-MOF (0.005 mmol, 1% mol), 1-bromododecane (internal standard, 50 µL), CH₃CN (2 mL), O_2 (0.8 MPa) and at 120 °C for 10 hours. The yield was determined by GC analyses.

14. The solvent effect on the selective oxidation of BA to BAD

Fig. S10 The solvent effect on the selective oxidation of BA to BAD using the V-Cd-MOF as catalyst. Reaction conditions: BA (0.5 mmol), V-Cd-MOF (0.005 mmol, 1% mol), 1-bromododecane (internal standard, 50 μ L), solvent (2 mL), O₂ (0.8 MPa) and at 120 °C for 10 hours. The yield was determined by GC analyses.

15. FTIR spectra and PXRD patterns of recovered V-Cd-MOF

Fig. S11 (a) FTIR spectra of V-Cd-MOF before and after catalytic uses. (b) PXRD

patterns of V-Cd-MOF before and after catalytic uses.

16. XPS spectra of recovered V-Cd-MOF

Fig. S12 XPS results of vanadium ions (a) and cadmium ions (b) of V-Cd-MOF before and after catalytic uses.

17. Comparison of different heterogeneous catalysts used for BA oxidation

Table S4 Comparison of different heterogeneous catalysts used for BA oxidation

		OH <u>catalyst</u>	С				
entry	catalyst	oxidant	additive	conv.	sel.	TON	ref.
				(%)	(%)		
1	Cu(mIM) ₄ V ₂ O ₆	H_2O_2	_	98.7	100	24.1	[5]
2	nano-y-Fe ₂ O ₃	H_2O_2	—	33	97	32.0	[6]
3	V/SiO ₂	t-BuOOH	—	>99	>99	20.0	[7]
4	Co ₃ O ₄ /AC	O ₂ (0.1 MPa)	—	100	87.3	3.1	[8]
5	Cu(BPYDCDE)	Air	TEMPO	100	100	50	[9]
	(OAc) ₂						
6	Cu ₃ (BTC) ₂	O ₂ (0.1 MPa)	TEMPO/	>99	>99	3.7	[10]
			Na ₂ CO ₃				
7	Ni(OH) ₂	O ₂ (0.1 MPa)	_	98	100	0.3	[11]
8	V-Cd-MOF	O ₂ (0.8 MPa)	_	>99	100	100	this
							work

Turnover number (TON) = mol of product / mol of catalyst

18. The coordination mode of Cd in Cd(Inic)₂ and the PXRD patterns of

Fig. S13 (a) The coordination mode of Cd in $Cd(Inic)_2$. (b) The PXRD patterns of $Cd(Inic)_2 \cdot 0.5$ DMF.

 $\{V^{IV}_{16}V^{V}_{18}O_{82}\}^{10-1}$ 19. The and structure of the **PXRD** patterns of $K_{10} \{ V^{IV}_{16} V^{V}_{18} O_{82} \} \cdot 20 H_2 O$ (a) (b) As-Prepared Intensity / a.u. Simulated 0 10 20 30 40 50 2 Theta / °

Fig. S14 (a) The structure of $\{V^{IV}_{16}V^{V}_{18}O_{82}\}^{10}$. (b) The PXRD patterns of $K_{10}\{V^{IV}_{16}V^{V}_{18}O_{82}\}\cdot 20H_2O(MV-\{V_{34}\}).$

20. The structure of $\{V_{16}\}$ -MOF and the PXRD patterns of the $\{V_{16}\}$ -MOF

Fig. S15 (a) The structure of $\{V_{16}\}$ -MOF. (b) The PXRD patterns of the $\{V_{16}\}$ -MOF.

21. Structures of open-shell singlet and nonet $\{V_{15}\}$ clusters

Fig. S16 Structures of open-shell singlet and nonet $\{V_{15}\}$ clusters. The Gibbs free energies are given in kcal/mol, relative to the most stable nonet $\{V_{15}\}^{S=9}$ conformation. To identify the stable catalytic activity species, we investigated the different spin states of the $\{V_{15}\}$ clusters using unrestricted open-shell DFT at the same level, respectively. The nonet state $\{V_{15}\}$ is proved more stable. (The $\{V_{15}\}$ mentioned in this paper corresponded triplet $\{V_{15}\}^{S=9}$).

22. Assessing the possible conformation of a $\{V_{15}\}\mbox{-bound BA}$ molecule

Fig. S17 Assessing the possible conformation of a $\{V_{15}\}$ -bound BA molecule. The Gibbs free energies are given in kcal/mol. White, gray, red, green and yellow spheres represent H, C, O, Cl and V atoms, respectively.

23. ¹H-NMR spectra of the isolated aldehydes

4-chlorobenzaldehyde. Light yellow solid. ¹H-NMR (400 MHz, CDCl₃).

4-nitrobenzaldehyde. Yellow solid. ¹H-NMR (400 MHz, CDCl₃).

4-methylbenzaldehyde. Light yellow oil. ¹H-NMR (400 MHz, CDCl₃).

⁴⁻methoxybenzaldehyde. Light yellow oil. ¹H-NMR (400 MHz, CDCl₃).

4-phenylbenzaldehyde. White solid. ¹H-NMR (400 MHz, CDCl₃).

2-phenylbenzaldehyde. White solid. ¹H-NMR (400 MHz, CDCl₃).

V-Cd-MOF				
Cd(1)-O(1)	2.366(4)	Cd(1)-O(1) ^{#1}	2.366(4)	
Cd(1)-N(1) ^{#2}	2.304(5)	Cd(1)-N(1)#3	2.304(5)	
Cd(1)-N(2)	2.322(5)	Cd(1)-N(2) ^{#1}	2.322(5)	
V(1)-O(1)	1.614(4)	V(1)-O(13)	1.914(4)	
V(1)-O(26)	1.893(4)	V(1)-O(27)	1.913(4)	
V(1)-O(28)	1.936(4)	V(2)-O(4)	1.600(4)	
V(2)-O(5)	1.815(4)	V(2)-O(13)	2.055(4)	
V(2)-O(20)	1.906(4)	V(2)-O(28)	1.900(4)	
V(3)-O(5)	1.806(4)	V(3)-O(19)	1.908(4)	
V(3)-O(21)	1.887(4)	V(3)-O(31)	1.599(4)	
V(3)-O(32)	2.084(4)	V(4)-O(14)	1.977(5)	
V(4)-O(20)	1.964(4)	V(4)-O(21)	1.968(4)	
V(4)-O(22)	1.982(4)	V(4)-O(30)	1.589(4)	
V(5)-O(7)	1.599(4)	V(5)-O(21)	1.915(4)	
V(5)-O(22)	1.883(5)	V(5)-O(23)	1.880(4)	
V(5)-O(32)	1.920(4)	V(6)-O(9)	1.605(4)	
V(6)-O(10)	1.855(4)	V(6)-O(22)	1.911(4)	
V(6)-O(23)	2.025(4)	V(6)-O(24)	1.908(4)	
V(7)-O(8)	1.597(4)	V(7)-O(23)	1.854(4)	
V(7)-O(24)	1.914(4)	V(7)-O(29)	1.950(4)	

24. Selected bond lengths [Å] and angles [deg] for V-Cd-MOF

V(7)-O(33)	1.903(4)	V(8)-O(15)	2.006(4)
V(8)-O(24)	1.968(4)	V(8)-O(25)	1.955(4)
V(8)-O(29)	1.964(4)	V(8)-O(34)	1.602(4)
V(9)-O(10)	1.757(4)	V(9)-O(11)	1.604(4)
V(9)-O(12)	2.047(4)	V(9)-O(14)	1.898(4)
V(9)-O(15)	1.921(4)	V(10)-O(16)	1.746(4)
V(10)-O(17)	1.602(4)	V(10)-O(18)	1.903(4)
V(10)-O(29)	1.879(4)	V(10)-O(33)	2.093(4)
V(11)-O(3)	1.593(4)	V(11)-O(12)	1.909(4)
V(11)-O(15)	1.956(4)	V(11)-O(25)	1.896(4)
V(11)-O(26)	1.825(4)	V(12)-O(2)	1.585(4)
V(12)-O(12)	1.866(4)	V(12)-O(13)	1.828(4)
V(12)-O(14)	1.940(4)	V(12)-O(20)	1.914(4)
V(13)-O(16)	1.898(4)	V(13)-O(25)	1.907(4)
V(13)-O(26)	2.022(4)	V(13)-O(27)	1.907(4)
V(13)-O(35)	1.595(4)	V(14)-O(18)	1.985(4)
V(14)-O(19)	1.960(4)	V(14)-O(27)	1.975(4)
V(14)-O(28)	1.973(4)	V(14)-O(36)	1.603(4)
V(15)-O(6)	1.599(4)	V(15)-O(18)	1.954(4)
V(15)-O(19)	1.909(4)	V(15)-O(32)	1.839(4)
V(15)-O(33)	1.858(4)		
O(1) ^{#1} -Cd(1)-O(1)	178.4(2)	N(1) ^{#2} -Cd(1)-O(1)	95.85(16)

N(1)#3-Cd(1)-O(1)	83.08(16)	N(1) ^{#2} -Cd(1)-N(2) ^{#1}	175.90(18)
O(1)-V(1)-O(13)	106.0(2)	O(1)-V(1)-O(27)	110.69(19)
O(13)-V(1)-O(28)	83.06(17)	O(4)-V(2)-O(5)	102.8(2)
O(5)-V(2)-O(20)	91.15(19)	O(28)-V(2)-O(20)	135.76(17)
O(5)-V(3)-O(19)	91.04(18)	O(19)-V(3)-O(32)	78.98(16)
O(32)-V(3)-O(31)	101.7(2)	O(14)-V(4)-O(22)	93.57(18)
O(22)-V(4)-O(21)	77.90(18)	O(21)-V(4)-O(30)	107.0(2)
O(7)-V(5)-O(21)	107.5(2)	O(21)-V(5)-O(32)	82.56(18)
O(32)-V(5)-O(23)	88.51(18)	O(9)-V(6)-O(10)	102.8(2)
O(10)-V(6)-O(22)	88.96(19)	O(22)-V(6)-O(24)	137.64(17)
O(8)-V(7)-O(29)	109.85(19)	O(29)-V(7)-O(24)	79.27(16)
O(24)-V(7)-O(33)	142.81(17)	O(24)-V(8)-O(15)	93.79(16)
O(15)-V(8)-O(34)	103.4(2)	O(34)-V(8)-O(25)	104.01(19)
O(10)-V(9)-O(12)	154.86(18)	O(12)-V(9)-O(14)	77.25(18)
O(14)-V(9)-O(11)	110.3(2)	O(16)-V(10)-O(18)	92.94(18)
O(18)-V(10)-O(33)	76.32(16)	O(33)-V(10)-O(29)	77.13(16)
O(3)-V(11)-O(15)	104.6(2)	O(15)-V(11)-O(12)	80.14(17)
O(12)-V(11)-O(26)	93.44(18)	O(2)-V(12)-O(12)	108.1(2)
O(12)-V(12)-O(20)	142.99(18)	O(20)-V(12)-O(14)	79.11(18)
O(16)-V(13)-O(25)	88.41(17)	O(25)-V(13)-O(27)	136.94(16)
O(27)-V(13)-O(35)	111.7(2)	O(19)-V(14)-O(18)	77.25(17)
O(18)-V(14)-O(28)	147.90(16)	O(28)-V(14)-O(27)	77.53(16)

O(19)-V(15)-O(32) 85.40(18)

#1 -X, +Y, 1/2-Z; #2 -X, -1+Y, 1/2-Z; #3 +X, -1+Y, +Z.

25. Reference

- 1 Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.
- 2 Fukui, K., Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161-4163.
- 3 Peintinger, M. F.; Oliveira, D. V.; Bredow, T., Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. *J. Comput. Chem.* **2013**, *34*, 451-459.
- 4 Mammen, M.; Shakhnovich, E. I.; Deutch, J. M.; Whitesides, G. M., Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid-melamine lattice. J. Org. Chem. 1998, 63, 3821-3830.
- 5 Li, J.; Huang, X.; Yang, S.; Xu, Y.; Hu, C., Controllable synthesis, characterization, and catalytic properties of three inorganic–organic hybrid copper vanadates in the highly selective oxidation of sulfides and alcohols. *Cryst. Growth Des.* 2015, 15, 1907-1914.
- 6 Shi, F.; Tse, M. K.; Pohl, M.-M.; Brückner, A.; Zhang, S.; Beller, M., Tuning catalytic activity between homogeneous and heterogeneous catalysis: Improved activity and selectivity of free nano-Fe₂O₃ in selective oxidations. *Angew. Chem. Int. Ed.* **2007**, *46*, 8866-8868.
- 7 Rout, L.; Nath, P.; Punniyamurthy, T., Vanadium-catalyzed selective oxidation of alcohols to aldehydes and ketones with *tert*-butyl hydroperoxide. *Adv. Synth. Catal.* **2007**, *349*, 846-848.
- 8 Zhu, J.; Kailasam, K.; Fischer, A.; Thomas, A., Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. *ACS Catal.* **2011**, *1*, 342-347.
- 9 Mei, Q.; Liu, H.; Yang, Y.; Liu, H.; Li, S.; Zhang, P.; Han, B., Base-free aerobic oxidation of alcohols over copper-based complex under ambient condition. ACS Sustainable Chem. Eng. 2018, 6, 2362-2369.
- 10 Peng, L.; Zhang, J.; Xue, Z.; Han, B.; Sang, X.; Liu, C.; Yang, G., Highly mesoporous metalorganic framework assembled in a switchable solvent. *Nature Commun.* **2014**, *5*, 4465.
- 11 Ji, H. B.; Wang, T. T.; Zhang, M. Y.; Chen, Q. L.; Gao, X. N., Green oxidation of alcohols by a reusable nickel catalyst in the presence of molecular oxygen. *React. Kinet. Catal. Lett.* 2007, 90, 251-257.