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1. Experimental section

1.1 Determination of NO;-N

First, remove 1 mL electrolyte from the electrolytic cell and dilute it to 50 mL to the detection
range. Afterwards, ] mL 1 M HCI and 1 mL 0.8 wt% H3;NOsS solution were added to the above
solution. The absorbance was detected by UV-Vis spectrophotometry after 60 minutes at a
wavelength of 220 nm and 275 nm. The final absorbance of NO;™ can be calculated as following:
A=A0 um - 2A275 i The calibration curve can be acquired through different concentrations of
KNOj; solutions and corresponding absorbance. The fitting curve (y = 0.23994x + 0.02701, R? =

0.9991) exhibits great linear relation of absorbance value with NO3;™-N concentration.
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Figure S1. (a) UV-Vis absorption curves of NO;-N. (b) Calibration curve used to estimate the concentrations of

NO37-N.

1.2 Determination of NO,-N

A mixture of p-aminobenzenesulfonamide (5 g), HCI (50 mL), and ultrapure water (450 mL)
were used as a color reagent. 1 mL electrolyte was extracted from the electrolytic cell and diluted
to 100 mL to detection range. 1 mL mixed solution of p-aminobenzenesulfonamide and HCl and 1
mL N-(1-Naphthyl) ethylenediamine dihydrochloride (1 g/L) were added into the above solution
and mixed uniformity. After standing at room temperature for 60 min, the absorbance was recorded
at a wavelength of 540 nm. The concentration-absorbance curve was calibrated using the standard
KNO, with different NO,-N concentrations. The fitting curve (y = 3.4212x + 0.0001026, R? =

0.9998) exhibits great linear relation of absorbance value with NO,™-N concentration.
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Figure S2. (a) UV-Vis absorption curves of NO, -N. (b) Calibration curve used to estimate the concentrations of
NOzi-N.

1.3 Determination of NH;-N

The Nessler’s reagent was employed as the color reagent for the determination of NH3-N.
Firstly, 1 mL electrolyte was extracted from the cathodic chamber and diluted to 100 mL to detection
range. Then, 1 mL of potassium sodium tartrate solution and 1 mL Nessler’s reagent were
subsequently added into the above solution and mixed uniformity. After standing at room
temperature for 20 min, the absorbance was recorded at a wavelength of 420 nm. The concentration-
absorbance curve was calibrated using the standard NH4CI with different NH4-N concentrations.
The fitting curve (y =0.1521x +0.010, RZ = 0.999) exhibits great linear relation of absorbance value

with NO4-N concentration.

(a) e (b)
0.3
y=0.1521x+0.010
[ @ 2
o ] R*=0.999
g 5 0.2
S 2
T T
2 2
2 :
0.1
: 0.0 4
400 420 440 460 480 00 05 10 15 20
Wavelength (nm) Concentration (ppm)

Figure S3. (a) UV-Vis absorption curves of Nessler's reagent assays kept with different concentrations of NH4*-N.

(b) Calibration curve used to estimate the concentrations of NH;"-N.

1.4 Calculations of FE, NH; yield, selectivity and conversion rate

FE = (8XF x Crn, X V)+ (MNH3 X Q) x 100%

NH, yield = (CNH3 xV)+ (MNH3 X tx5)



Syi. = Cyy. +AC %1009
NH3 NH3 NO; %

Conversion=AC _ + (Cy*x100%
NO 3

Where F is the Faradic constant (96485 C mol™"), Cyy; is the measured NH; concentration, V
is the volume of electrolyte in the anode compartment (120 mL), Myy; is the molar mass of NH3, O
is the total quantity of applied electricity, ¢ is the electrolysis time (1 h), S is the loaded area of
catalyst (1 cm™), Cj is the initial concentration of NOs~, and ACyo;3- is the concentration difference
of NO;™ before and after electrolysis.
1.5 Electrochemical in-situ ATR-FTIR test

The glassy carbon electrode supported by catalyst was used as the working electrode. 0.1 M
Na,SO4 with 50 ppm NO;-N was adopted as the electrolyte. The in-situ ATR-FTIR spectra were
collected during LSV test from 0 to —1.5 V vs. Ag/AgCl with a scan rate of 2 mV/s. Each reflectance
spectrum was collected with a time resolution of 60 s at a spectral resolution of 4 cm™!. Then, all of

the spectra were transformed into absorbance spectra.

2. Result and discussion
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Figure S4. (a) XRD patterns of the Cu-BTC, Cu-BTEC and Cu-BDC. (b) CV curves of Cu-BTC in the reduction

process during the last few cycles. (c) High-resolution XPS spectra for Cu 2p of the Cu-BTC-Cu, Cu-BTEC-Cu, and
Cu-BDC-Cu.
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Figure S5. SEM images of the (a, d) Cu-BTC-Cu, (b, ¢) Cu-BTEC-Cu, and (¢, f) Cu-BDC-Cu.
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Figure S6. Experimental equipment schematic diagram for electrocatalytic NRA
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Figure S7. (a) LSV curves of Cu-BTEC-Cu and Cu-BDC-Cu at 0.05 M Na,SO, and 0.05 M Na,SO,4+750 mg/L
NO;5™-N.
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Figure S8. CV curves of (a) Cu-BTC-Cu, (b) Cu-BTEC-Cu, and (c¢) Cu-BDC-Cu under different scan rates from 20
to 120 mV S!
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Figure S9. CV curves of (a) Cu-BTC-Cu-5, (b) Cu-BTEC-Cu-15, and (¢) Cu-BDC-Cu-30 under different scan rates
from 20 to 100 mV S-1. (d) The fitted linear relationship between current density and the scan rate for the Cu-BTC-
Cu-5, Cu-BTEC-Cu-15, and Cu-BDC-Cu-30.
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Figure S10. Characterizations of the Cu-BTC-Cu participates in electrocatalytic nitrate reduction before and after
(Cu-BTC-Cu-Before and Cu-BTC-Cu-After): (a) High-resolution XPS spectra for Cu 2p, (b) XRD patterns, and (c,
d) SEM images.

The standard curve is prepared by external standard method using NH4Cl as

standard solution. (Figure S11 a and b)
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Figure S11. The NH,4" detection of (a) standard spectra and (b) fitting curve by ion chromatography.
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Figure S12. NH; yields and FE of the Cu-BTC-Cu at different potentials by the Nessler’s color reagent and ion

chromatography.
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Figure S13. NH; yields and FE of the Cu-BTC-Cu at different concentrations of NO;-N.
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Figure S14. NH; yields and FE of the Cu-BTC-Cu at two-electrode and three-electrode system.
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Figure S15. The electrochemical impedance spectroscopy of Cu-BTC-Cu, Cu-BTEC-Cu, and Cu-BDC-Cu

Table S1 Comparison of ammonia synthesis from nitrate reduction over Cu-BTC-Cu and other

reported catalysts.

Catalyst Electrolyte NH; yield Ref.
(ug h'tem2)

Cu-BTC-Cu 0.05 M K,SO4/750 mg L' NO;™-N 4009.3 This work
Cu@Th-BPYDC 1 M KOH/1400 mg L' NO;-N 3830.1 !
BCN-Cu 10 0.1 M KOH/1400 mg L' NO3;-N 1900.07 2
FeS,/RGO 0.5 M Na,S04/1400 mg L™! NO;™-N 2320 3
WSe, .« 0.5 M Na,S04/1400 mg L™! NO;-N 2420 4
MnO, 0.1 M Na,S04/1400 mg L™! NO;-N 3340 3

BCN@Ni 0.1 M KOH/1400 mg L' NO;-N 2320.2 6
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