Supporting Information

Comparative ParaCEST effect of amide and hydroxy group in divalent Cobalt and Nickel complexes of tripyridine-based ligands

Suvam Kumar Panda,^a Julia Torres,^b Carlos Kremer,^b and Akhilesh Kumar Singh*^a

^aIndian Institute of Technology Bhubaneswar, Khordha, Odisha, India, Pin-752050.

^bÁrea de Química Inorgánica – DEC, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay.

Contents

- 1. Figure S1. ¹H NMR (400 MHz) of compound 3 recorded in CDCl₃ (* mark indicates the residual peak of solvent).
- 2. Figure S2. ¹³C NMR (100 MHz) of compound 3 recorded in CDCl₃ (* mark indicates the residual peak of solvent).
- **3.** Figure S3. ¹H NMR (400 MHz) of TDTA recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).
- 4. Figure S4. ¹³C NMR (100 MHz) of TDTA recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).
- 5. Figure S5. ¹H NMR (400 MHz) of compound 4 recorded in CDCl₃.
- **6.** Figure S6. ¹³C NMR (100 MHz) of compound 4 recorded in CDCl₃ (* mark indicates the residual peak of solvent).
- 7. Figure S7. ¹H NMR (400 MHz) of TMTP recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).
- 8. Figure S8. ¹³C NMR (100 MHz) of TMTP recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).
- 9. Figure S9. HRMS spectrum of compound 3.
- 10. Figure S10. HRMS spectrum of ligand TDTA.
- 11. Figure S11. HRMS spectrum of [Co(TDTA)]²⁺.
- **12. Figure S12.** HRMS spectrum of [Ni(TDTA)]²⁺.
- **13. Figure S13.** HRMS spectrum of compound 4.
- 14. Figure S14. HRMS spectrum of ligand TMTP.
- **15. Figure S15.** HRMS spectrum of [Co(TDTA)]²⁺.
- 16. Figure S16. HRMS spectrum of [Ni(TDTA)]²⁺.

- **17. Figure S17.** Species distribution diagram for TMTP and TDTA at 25.0 °C and I = 0.15 mol·L⁻¹ NaClO₄.
- 18. Figure S18. Fit goodness for the protonation of TMTP (a) and TDTA (b), (0.15 M NaClO₄ at 25.0 °C).
- **19. Figure S19.** Species distribution diagram for Co-TMTP system at 25.0 °C and I = 0.15mol·L⁻¹ NaClO₄. [Co²⁺]_{total} = 0.002 mol·L⁻¹, [TMTP]_{total} = 0.004 mol·L⁻¹.
- **20. Figure S20.** Fit goodness for the systems Co(II)-TDTA and Co(II)-TMTP (a) Ni(II)-TMTP (b), and Cu(II)-TMTP (0.15 M NaClO₄ at 25.0 °C).
- **21. Figure S21.** ¹H NMR spectra of the four complexes recorded in DMSO- d_6 and upon addition of 30 μ L D₂O to the same NMR tube. The exchangeable (NH) protons are represented by an * mark.
- 22. Figure S22. ¹H NMR spectra of the [Co(TDTA)]²⁺ and [Ni(TDTA)]²⁺ by varying temperature (top) and pH (bottom). Temperature variation experiments were recorded in D₂O. pH variation experiments were performed by taking 10 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C in distilled water, a D₂O sealed capillary tube was used inside the NMR tube for locking purposes.
- 23. Figure S23. ¹H NMR spectra of the [Co(TMTP)]²⁺ and [Ni(TMTP)]²⁺ by varying temperature (top) and pH (bottom). Temperature variation experiments were recorded in D₂O. pH variation experiments were performed by taking 10 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C in distilled water, a D₂O sealed capillary tube was used inside the NMR tube for locking purposes.
- 24. Figure S24. ¹H NMR spectra (400 MHz) of 10 mM of [Co(TMTP)]²⁺ in aqueous solutions containing 20 mM HEPES and 100 mM NaCl, buffered at various pH values from 2 5. The highlighted dotted region depicts the complex dissociation at lower pH values.
- 25. Figure S25. ¹H NMR spectra (400 MHz) of 10 mM of [Ni(TMTP)]²⁺ in aqueous solutions containing 20 mM HEPES and 100 mM NaCl, buffered at various pH values from 2 5. The highlighted dotted region depicts the complex dissociation at lower pH values.
- **26. Figure S26.** 400 MHz NMR spectrum of the TMTP-Co complex in DMSO-d₆ with the integration of all individual peaks (* mark indicates the presence of exchangeable protons).
- **27. Figure S27.** 400 MHz NMR spectrum of the TMTP-Co complex in D_2O with the identification of all paramagnetic protons and their corresponding isomers.
- 28. Figure S28. Possible isomers of the TMTP-Co complex in its solution state.

- **29. Figure S29.** CEST peak positions of the amide protons in TMTP-Co and TMTP-Ni complexes.
- 30. Figure S30. CEST spectra of 10 mM [Co(TDTA)]²⁺ and [Ni(TDTA)]²⁺ (20 mM HEPES, pH 7.4, 400 MHz) at 37 °C with a saturation time of 4 s and saturation power of B₁ = 25 μT
- **31. Figure S31.** CEST spectra of the exchangeable proton region of 10 mM $[Co(TMTP)]^{2+}$ (left) and $[Ni(TMTP)]^{2+}$ (right) in 20 mM HEPES and 100 mM NaCl at pH 7.4 with varied pre-saturation power levels. RF pre-saturation pulse was applied for 4 s with varying saturation power of 5 µT to 25 µT for $[Co(TMTP)]^{2+}$ and 15 to 25 µT for $[Ni(TMTP)]^{2+}$.
- **32. Figure S32.** Solution magnetic susceptibility data for $[Co(TDTA)]^{2+}$ (left) and $[Ni(TDTA)]^{2+}$ (right) were recorded at different pH by using 3 5 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C.
- **33. Figure S33.** Solution magnetic susceptibility data for [Co(TMTP)]²⁺ (left) and [Ni(TMTP)]²⁺ (right) were recorded at different pH by using 3 5 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C.
- **34. Figure S34.** UV spectrum (50 μM) of the ligand TMTP (left) and its Co(II), Ni(II), and Cu(II) complexes (right), recorded in 20 mM HEPES, and 100 mM NaCl at pH 7.4.
- 35. Figure S35. UV-Vis spectra of [Co(TMTP)]²⁺ (left) and [Ni(TMTP)]²⁺ (right) (5 mM) in 20 mM HEPES, and 100 mM NaCl at pH 7.4.
- **36. Figure S36.** Metal displacement reaction of the $[Co(TMTP)]^{2+}$ and $[Ni(TMTP)]^{2+}$ complexes with competing Cu(II) ion, monitored for 8 hours at 264 nm. Samples containing 50 μ M $[Co(TMTP)]^{2+}$ or $[Ni(TMTP)]^{2+}$ with 1, 2, and 5 equivalent ratios of CuCl₂ ions in aqueous solutions containing 20 mM HEPES and 100 mM NaCl buffered at pH 7.4. A 50 μ M $[Co(TMTP)]^{2+}$ sample is present to determine the absorbance of a 100% dissociation.
- 37. Figure S37. UV-Vis kinetic study of the complexes [Co(TMTP)]²⁺ and [Ni(TMTP)]²⁺ at 264 nm in acidic conditions, pH 4, (left) and in the presence of competing anions like 25 mM K₂CO₃ and 0.4 mM K₂HPO₄ (right).
- 38. Figure S38. Cyclic voltammogram of [Co(TMTP)]²⁺ (left) and [Ni(TMTP)]²⁺ (right) recorded in an aqueous phase contained 1 mM complex, 20 mM HEPES, and 100 mM NaCl (pH = 7.4).
- **39. Table S1.** Selected bond angles of the four complexes.

Figure S1. ¹H NMR (400 MHz) of compound 3 recorded in $CDCl_3$ (* mark indicates the residual peak of solvent).

Figure S2. ¹³C NMR (100 MHz) of compound 3 recorded in CDCl₃ (* mark indicates the residual peak of solvent).

Figure S3. ¹H NMR (400 MHz) of TDTA recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).

Figure S4. ¹³C NMR (100 MHz) of TDTA recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).

Figure S5. ¹H NMR (400 MHz) of compound 4 recorded in CDCl₃.

Figure S6. ¹³C NMR (100 MHz) of compound 4 recorded in CDCl₃ (* mark indicates the residual peak of solvent).

Figure S7. ¹H NMR (400 MHz) of TMTP recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).

Figure S8. ¹³C NMR (100 MHz) of TMTP recorded in DMSO- d_6 (* mark indicates the residual peak of solvent).

Figure S9. HRMS spectrum of compound 3.

Figure S10. HRMS spectrum of ligand TDTA.

Figure S11. HRMS spectrum of [Co(TDTA)]²⁺.

Figure S12. HRMS spectrum of [Ni(TDTA)]²⁺.

Figure S13. HRMS spectrum of compound 4.

Figure S14. HRMS spectrum of ligand TMTP.

Figure S15. HRMS spectrum of [Co(TMTP)]⁺.

Figure S16. HRMS spectrum of [Ni(TMTP)]⁺.

Figure S17. Species distribution diagram for TMTP and TDTA at 25.0 °C and $I = 0.15 \text{ mol} \cdot \text{L}^{-1}$ NaClO₄.

Figure S18. Fit goodness for the protonation of TMTP (a) and TDTA (b), (0.15 M NaClO₄ at 25.0 $^{\circ}$ C).

Figure S19. Species distribution diagram for Co-TMTP system at 25.0 °C and $I = 0.15 \text{ mol} \cdot \text{L}^{-1}$ NaClO₄. $[\text{Co}^{2+}]_{\text{total}} = 0.002 \text{ mol} \cdot \text{L}^{-1}$, $[\text{TMTP}]_{\text{total}} = 0.004 \text{ mol} \cdot \text{L}^{-1}$.

Figure S20. Fit goodness for the systems Co(II)-TDTA (a), Co(II)-TMTP (b), Ni(II)-TMTP (c), and Cu(II)-TMTP (d) (0.15 M NaClO₄ at 25.0 °C).

Figure S21. ¹H NMR spectra of the four complexes recorded in DMSO- d_6 and upon addition of 30 µL D₂O to the same NMR tube. The exchangeable protons are represented by an * mark.

Figure S22. ¹H NMR spectra of the $[Co(TDTA)]^{2+}$ and $[Ni(TDTA)]^{2+}$ by varying temperature (top) and pH (bottom). Temperature variation experiments were recorded in D₂O. pH variation experiments were performed by taking 10 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C in distilled water, a D₂O-sealed capillary tube was used inside the NMR tube for locking purposes.

Figure S23. ¹H NMR spectra of the $[Co(TMTP)]^{2+}$ and $[Ni(TMTP)]^{2+}$ by varying temperature (top) and pH (bottom). Temperature variation experiments were recorded in D₂O. pH variation experiments were performed by taking 10 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C in distilled water, a D₂O-sealed capillary tube was used inside the NMR tube for locking purposes.

Figure S24. ¹H NMR spectra (400 MHz) of 10 mM of $[Co(TMTP)]^{2+}$ in aqueous solutions containing 20 mM HEPES and 100 mM NaCl, buffered at various pH values from 2 – 5. The highlighted dotted region depicts the complex dissociation at lower pH values.

Figure S25. ¹H NMR spectra (400 MHz) of 10 mM of $[Ni(TMTP)]^{2+}$ in aqueous solutions containing 20 mM HEPES and 100 mM NaCl, buffered at various pH values from 2 – 5. The highlighted dotted region depicts the complex dissociation at lower pH values.

Figure S26. 400 MHz NMR spectrum of the TMTP-Co complex in DMSO- d_6 with the integration of all individual peaks (* mark indicates the presence of exchangeable protons).

Figure S27. 400 MHz NMR spectrum of the TMTP-Co complex in D_2O with the identification of all paramagnetic protons and their corresponding isomers.

Figure S28. Possible isomers of the TMTP-Co complex in its solution state.

Figure S29. CEST peak positions of the amide protons in TMTP-Co and TMTP-Ni complexes.

Figure S30. CEST spectra of 10 mM [Co(TDTA)]²⁺ and [Ni(TDTA)]²⁺ (20 mM HEPES, pH 7.4, 400 MHz) at 37 °C with a saturation time of 4 s and saturation power of $B_1 = 25 \mu T$

Figure S31. CEST spectra of the exchangeable proton region of 10 mM $[Co(TMTP)]^{2+}$ (left) and $[Ni(TMTP)]^{2+}$ (right) in 20 mM HEPES and 100 mM NaCl at pH 7.4 with varied presaturation power levels. RF pre-saturation pulse was applied for 4 s with varying saturation power of 5 μ T to 25 μ T for $[Co(TMTP)]^{2+}$ and 15 to 25 μ T for $[Ni(TMTP)]^{2+}$.

Figure S32. Solution magnetic susceptibility data for $[Co(TDTA)]^{2+}$ (left) and $[Ni(TDTA)]^{2+}$ (right) were recorded at different pH by using 3 – 5 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C.

Figure S33. Solution magnetic susceptibility data for $[Co(TMTP)]^{2+}$ (left) and $[Ni(TMTP)]^{2+}$ (right) were recorded at different pH by using 3 – 5 mM complex, 20 mM HEPES, and 100 mM NaCl at 37 °C.

Figure S34. UV spectrum (50 μ M) of the ligand TMTP (left) and its Co(II), Ni(II), and Cu(II) complexes (right), recorded in 20 mM HEPES, and 100 mM NaCl at pH 7.4.

Figure S35. UV-Vis spectra of [Co(TMTP)]²⁺ (left) and [Ni(TMTP)]²⁺ (right) (5 mM) in 20 mM HEPES, and 100 mM NaCl at pH 7.4.

Figure S36. Metal displacement reaction of the $[Co(TMTP)]^{2+}$ and $[Ni(TMTP)]^{2+}$ complexes with competing Cu(II) ion, monitored for 8 hours at 264 nm. Samples containing 50 μ M $[Co(TMTP)]^{2+}$ or $[Ni(TMTP)]^{2+}$ with 1, 2, and 5 equivalent ratios of CuCl₂ ions in aqueous solutions containing 20 mM HEPES and 100 mM NaCl buffered at pH 7.4. A 50 μ M $[Cu(TMTP)]^{2+}$ sample is present to determine the absorbance of a 100% dissociation.

Figure S37. UV-Vis kinetic study of the complexes $[Co(TMTP)]^{2+}$ and $[Ni(TMTP)]^{2+}$ at 264 nm in acidic conditions, pH 4, (left) and in the presence of competing anions like 25 mM K₂CO₃ and 0.4 mM K₂HPO₄ (right).

Figure S38. Cyclic voltammogram of $[Co(TMTP)]^{2+}$ (left) and $[Ni(TMTP)]^{2+}$ (right) recorded in an aqueous phase contained 1 mM complex, 20 mM HEPES, and 100 mM NaCl (pH = 7.4).

[Co(TDTA)]·2Cl·H ₂ O	[Ni(TDTA)Cl]·Cl·2H ₂ O	[Co(TMTP)]·2Cl	[Ni(TMTP)]·2Cl
Bond angles (deg)			
N(1)-Co(1)-N(3)	N(4)-Ni(1)-N(2)	N(4)-Co(1)-N(2)	O(3)-Ni(1)-O(1)
N(1)-Co(1)-N(4)	N(4)-Ni(1)-O(3)	N(4)-Co(1)-N(6)	O(3)-Ni(1)-O(2)
N(3)-Co(1)-N(4)	N(2)-Ni(1)-O(3)	N(2)-Co(1)-N(6)	O(1)-Ni(1)-O(2)
N(1)-Co(1)-O(2)	N(4)-Ni(1)-N(1)	N(4)-Co(1)-O(1)	O(3)-Ni(1)-N(3)
N(3)-Co(1)-O(2)	N(2)-Ni(1)-N(1)	N(2)-Co(1)-O(1)	O(1)-Ni(1)-N(3)
N(4)-Co(1)-O(2)	O(3)-Ni(1)-N(1)	N(6)-Co(1)-O(1)	O(2)-Ni(1)-N(3)
N(1)-Co(1)-O(1)	N(4)-Ni(1)-N(3)	N(4)-Co(1)-O(3)	O(3)-Ni(1)-N(1)
N(3)-Co(1)-O(1)	N(2)-Ni(1)-N(3)	N(2)-Co(1)-O(3)	O(1)-Ni(1)-N(1)
N(4)-Co(1)-O(1)	O(3)-Ni(1)-N(3)	N(6)-Co(1)-O(3)	O(2)-Ni(1)-N(1)
O(2)-Co(1)-O(1)	N(1)-Ni(1)-N(3)	O(1)-Co(1)-O(3)	N(3)-Ni(1)-N(1)
N(1)-Co(1)-O(3)	N(4)-Ni(1)-Cl(1)	N(4)-Co(1)-O(2)	O(3)-Ni(1)-N(4)
N(3)-Co(1)-O(3)	N(2)-Ni(1)-Cl(1)	N(2)-Co(1)-O(2)	O(1)-Ni(1)-N(4)
N(4)-Co(1)-O(3)	O(3)-Ni(1)-Cl(1)	N(6)-Co(1)-O(2)	O(2)-Ni(1)-N(4)
O(2)-Co(1)-O(3)	N(1)-Ni(1)-Cl(1)	O(1)-Co(1)-O(2)	N(3)-Ni(1)-N(4)
O(1)-Co(1)-O(3)	N(3)-Ni(1)-Cl(1)	O(3)-Co(1)-O(2)	N(1)-Ni(1)-N(4) 105.85(7)
N(1)-Co(1)-N(2)		N(4)-Co(1)-N(3)	
N(3)-Co(1)-N(2)		N(2)-Co(1)-N(3)	
N(4)-Co(1)-N(2)		N(6)-Co(1)-N(3)	
O(2)-Co(1)-N(2)		O(1)-Co(1)-N(3)	
O(1)-Co(1)-N(2)		O(3)-Co(1)-N(3)	
O(3)-Co(1)-N(2)		O(2)-Co(1)-N(3)	

 Table S1. Selected bond angles of the four complexes.