Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Application of nonmetallic frustrated cations

in the activation of small molecules

Kinga Kaniewska-Laskowska,^a* Marcin Czapla,^b Jarosław Chojnacki,^a

and Rafał Grubba^{a*}

*corresponding author: kinga.kaniewska-laskowska@pg.edu.pl, rafal.grubba@pg.edu.pl

^aDepartment of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland ^bLaboratory of Quantum Chemistry, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

Table of Contents

Experimental section
Experimental details
Preparation of 33
Preparation of 44
Preparation of 55
Preparation of 6
NMR spectra of isolated compounds7
NMR spectra of 38
NMR spectra of 413
NMR spectra of 5
NMR spectra of 6 23
Reaction of 1 with Li[Al(OC(CF ₃) ₃) ₄] – monitoring of reaction progress by ^{11}B and $^{31}P{^{1}H}$ NMR 28
X-ray structure analysis
X-ray structure analysis details
DFT calculations
General methods
Structures
Cartesian coordinates
References

Experimental section

Experimental details

All manipulations were performed under a dry argon atmosphere employing flame-dried Schlenktype glassware on a vacuum line or in a glovebox. Solvents, dichloromethane and dichloromethaned₂ were dried over P₂O₅ and distilled under argon. Pentane was dried with sodium-potassium alloy and distilled under argon. 1D (¹H, ¹¹B, ³¹P{¹H}, ³¹P, ¹³C, ²⁷Al, ¹⁹F {¹H}, ¹⁹F) and 2D NMR spectra were recorded on a Bruker AV400 MHz spectrometer (external standard TMS for ¹H and ¹³C; BF₃·Et₂O for ¹¹B, 85% H₃PO₄ for ³¹P; [Al(H₂O)₆]³⁺ for ²⁷Al, CFCl₃ for ¹⁹F) at ambient temperature. Reaction progress was monitored by ¹¹B, ³¹P{¹H} and ³¹P NMR spectra of reaction mixtures. Data were processed using Bruker's Topspin 3.5 software. Elemental analyses of all compounds were performed using Thermo Scientific Flash 2000 organic elemental analyzer. The principle of quantitative CHNS analysis is based on complete combustion of sample within high-temperature reactor, followed by an accurate and precise determination of produced elemental gases by TCD detector (thermal conductivity detector). (*i*Pr₂N)B(Br)PtBu₂¹ and Li[Al(OC(CF₃)₃)₄]² were prepared according to literature procedures.

Preparation of 3

A solution of phenyl isocyanate in CH₂Cl₂ (0.25 M, 1 mL) was added dropwise to a stirred suspension of **1** (0.084 g, 0.250 mmol) and Li[Al(OC(CF₃)₃)₄] (0.244 g, 0.250 mmol) in CH₂Cl₂ (4 mL) at -70 °C. The mixture was allowed to warm to room temperature and stirred overnight. Filtration to separate the white precipitate of LiBr, followed by the evaporation of the solvent under reduced pressure, afforded a light yellow oily residue. Slow cooling of the resulting oil layered with 2 mL of pentane to +4 °C gave suitable light yellow crystals for X-ray diffraction. Yield: 56.0% (0.200 g, 0.140 mmol). **Elemental analysis** calc. for C₃₇H₃₇AlBF₃₆N₂O₅P (1342.41 g/mol): C, 33.10; H, 2.78; N, 2.09. Found: C, 33.50; H, 2.61; N 2.00.

¹¹B NMR (CD₂Cl₂): δ 28.7 (bd, ¹J_{BP} = 119.3 Hz).

³¹P{¹H} NMR (CD₂Cl₂): δ 66.8 (bm).

¹**H NMR (CD₂Cl₂):** δ 7.49 (1 H, m, *p*-C*H* of Ph); 7.47 (2 H, m, *o*-C*H* of Ph); 7.07 (2 H, m, *o*-C*H* of Ph); 3.50 (1 H, sept, ³*J*_{HH} = 6.7 Hz, C*H*(CH₃)₂); 3.39 (1 H, dsept, ³*J*_{HH} = 7.0 Hz, ⁴*J*_{PH} = 1.5 Hz, C*H*(CH₃)₂); 1.62 (18 H, d, ³*J*_{PH} = 17.5 Hz, C(C*H*₃)₃); 1.34 (6 H, d, ³*J*_{HH} = 6.7 Hz, CH(C*H*₃)₂); 0.92 (6 H, d, ³*J*_{HH} = 7.0 Hz, CH(C*H*₃)₂).

¹³C{¹H} NMR (CD₂Cl₂): δ 165.0 (d, ¹J_{CP} = 66.2 Hz, NCO); 135.6 (d, ³J_{CP} = 20.1 Hz, *ipso-C* of Ph); 130.4 (s, *p-C*H of PPh); 130.2 (s, *o-C*H of PPh); 126.9 (s, *m-C*H of PPh); 121.2 (q, ¹J_{CF} = 292.6 Hz, OC(CF₃)₃); 59.9 (d, ³J_{CP} = 6.3 Hz, CH(CH₃)₂); 47.2 (d, ³J_{CP} = 6.3 Hz, CH(CH₃)₂); 37.3 (d, ¹J_{CP} = 11.9 Hz, C(CH₃)₃); 28.4 (d, ²J_{CP} = 1.9 Hz, C(CH₃)₃); 23.6 (s, CH(CH₃)₂); 22.5 (s, CH(CH₃)₂).

²⁷AI NMR (CD₂Cl₂): δ 34.2 (s, [AI(OC(CF₃)₃)₄]⁻).

¹⁹F{¹H} (CD₂Cl₂): δ -75.7 (s, OC(CF₃)₃).

Preparation of 4

A solution of *N*,*N*'-diisopropylcarbodiimide in CH₂Cl₂ (0.25 M, 1 mL) was added dropwise to a stirred suspension of **1** (0.084 g, 0.250 mmol) and Li[Al(OC(CF₃)₃)₄] (0.244 g, 0.250 mmol) in CH₂Cl₂ (4 mL) at -70 °C. The mixture was allowed to warm to room temperature and stirred overnight. After filtration of the precipitated LiBr, the resulting solution was concentrated to the half of volume and left at -20 °C to afford colourless crystals. Yield: 61% (0.207 g, 0.153 mmol). **Elemental analysis** calc. for C₃₇H₄₆AlBF₃₆N₃O₄P (1349.49 g/mol): C, 32.93; H, 3.44; N, 3.11. Found: C, 33.20; H, 3.23; N, 3.01.

¹¹**B NMR (CD₂Cl₂):** δ 27.4 (bd, ¹*J*_{BP} = 106.4 Hz).

³¹P{¹H} NMR (CD₂Cl₂): δ 69.2 (bm).

¹**H NMR** (**CD**₂**Cl**₂): δ 4.05 (1 H, dsept, ³J_{HH} = 6.7 Hz, ⁴J_{PH} = 1.4 Hz, N(P)CNC*H*(CH₃)₂); 3.46 (2 H, m, C*H*(CH₃)₂); 3.16 (1 H, dsept, ³J_{HH} = 6.0 Hz, ⁴J_{PH} = 2.8 Hz, N(B)CNC*H*(CH₃)₂); 1.47 (18 H, d, ³J_{PH} = 17.0 Hz, C(C*H*₃)₃, overlapped with N(P)CNCH(C*H*₃)₂); 1.44 (dd, 6 H, ³J_{HH} = 6.7 Hz, ⁵J_{PH} = 1.2 Hz, N(P)CNCH(C*H*₃)₂, overlapped with C(C*H*₃)₃); 1.26 (12 H, d, ³J_{HH} = 6.9 Hz, CH(C*H*₃)₂); 1.20 (6 H, d, ³J_{HH} = 6.0 Hz, N(B)CNCH(C*H*₃)₂).

¹³C{¹H} NMR (CD₂Cl₂): δ 137.8 (d, ¹J_{CP} = 21.4 Hz, NCN); 121.2 (q, ¹J_{CF} = 293.1 Hz, OC(CF₃)₃); 57.6 (d, ³J_{CP} = 10.9 Hz, N(B)CNCH(CH₃)₂); 53.3 (d, ³J_{CP} = 16.9 Hz, N(P)CNCH(CH₃)₂); 36.1 (d, ¹J_{CP} = 10.9 Hz, C(CH₃)₃); 29.1 (d, ²J_{CP} = 2.7 Hz, C(CH₃)₃); 24.1 (s, N(B)CNCH(CH₃)₂); 22.6 (very bs, CH(CH₃)₂); 18.6 (s, N(P)CNCH(CH₃)₂). The CH(CH₃)₂ atoms were not detected at the ¹³C{¹H} spectrum.

²⁷AI NMR (CD₂Cl₂): δ 34.2 (s, [AI(OC(CF₃)₃)₄]⁻).

¹⁹F{¹H} (CD₂Cl₂): δ -75.7 (s, OC(CF₃)₃).

Preparation of 5

A solution of acetonitrile in CH_2Cl_2 (0.25 M, 2 mL) was added dropwise to a stirred suspension of **1** (0.084 g, 0.250 mmol) and Li[Al(OC(CF₃)₃)₄] (0.244 g, 0.250 mmol) in CH_2Cl_2 (4 mL) at -70 °C. The mixture was allowed to warm to room temperature and stirred overnight. After filtration of the precipitated LiBr, the resulting solution was concentrated to the half of volume and layered with 2 mL of pentane. Storage at +4 °C gave suitable yellow crystals for X-ray diffraction. Cooling to -20 °C of the mother liquor gave an additional crop. Yield: 50% (0.165 g, 0.126 mmol). **Elemental analysis** calc. for $C_{34}H_{38}AlBF_{36}N_3O_4P$ (1305.39 g/mol): C, 31.28; H, 2.93; N, 3.22. Found: C, 31.04; H, 2.84; N, 2.95.

¹¹B NMR (CD₂Cl₂): δ 22.6 (s).

³¹P{¹H} NMR (CD₂Cl₂): δ -32.7 (s).

¹**H NMR (CD₂Cl₂):** δ 4.18 (2 H, bs, C*H*(CH₃)₂); 2.67 (6 H, d, ³*J*_{PH} = 6.2 Hz, NCC*H*₃); 1.50 (18 H, d, ³*J*_{PH} = 16.1 Hz, C(C*H*₃)₃); 1.24 (12 H, d, ³*J*_{HH} = 6.8 Hz, CH(C*H*₃)₂).

¹³C{¹H} NMR (CD₂Cl₂): δ 161.9 (s, NCCH₃); 121.2 (q, ¹J_{CF} = 292.3 Hz, OC(CF₃)₃); 47.3 (s, CH(CH₃)₂); 38.3 (d, ¹J_{CP} = 14.5 Hz, C(CH₃)₃); 35.3 (d, ²J_{CP} = 32.7 Hz, NCCH₃); 29.0 (s, C(CH₃)₃); 23.2 (s, CH(CH₃)₂).

²⁷AI NMR (CD₂Cl₂): δ 34.2 (s, [AI(OC(CF₃)₃)₄]⁻).

¹⁹**F**{¹**H**} (**CD**₂**Cl**₂): δ -75.7 (s, OC(C**F**₃)₃).

Preparation of 6

A solution of phenyl isocyanate in CH₂Cl₂ (0.25 M, 1 mL) was added dropwise to a stirred suspension of **1** (0.084 g, 0.250 mmol) and Li[Al(OC(CF₃)₃)₄] (0.244 g, 0.250 mmol) in CH₂Cl₂ (4 mL) at -70 °C. The mixture was allowed to warm to room temperature and stirred overnight. After checking of the reaction progress by ¹¹B, ³¹P{¹H} and ³¹P NMR (100% conversion of **1** into **3**), to the stirred resulting mixture, a solution of acetonitrile in CH₂Cl₂ (0.25 M, 1 mL) was added dropwise at -70 °C. Again, the mixture was allowed to warm to room temperature and stirred overnight. After filtration of the precipitated LiBr, the resulting solution was concentrated to the half of volume and layered with 2 mL of pentane. Storage at +4 °C gave suitable crystals for X-ray diffraction. Drying of crystals under high vacuum resulted in the removal of non-coordinated solvent molecule. Yield: 41% (0.142 g, 0.103 mmol). **Elemental analysis** calc. for C₃₉H₄₀AlBF₃₆N₃O₅P (1383.46 g/mol): C, 33.85; H, 2.91; N, 3.04. Found: C, 34.05; H, 2.82; N, 2.95.

¹¹**B NMR (CD₂Cl₂):** δ 26.6 (s).

³¹P{¹H} NMR (CD₂Cl₂): δ 10.9 (s).

¹H NMR (CD₂Cl₂): δ 7.42 (2 H, m, *o*-CH of Ph); 7.34 (1 H, m, *p*-CH of Ph); 7.16 (2 H, m, *m*-CH of Ph); 3.40 (1 H, sept, ³J_{HH} = 6.6 Hz, CH(CH₃)₂); 3.25 (1 H, sept, ³J_{HH} = 6.9 Hz, CH(CH₃)₂); 2.75 (3 H, d, ³J_{PH} = 5.9 Hz, NCCH₃); 1.58 (18 H, d, ³J_{PH} = 16.7 Hz, C(CH₃)₃); 1.33 (6 H, d, ³J_{HH} = 6.9 Hz, CH(CH₃)₂); 0.56 (6 H, d, ${}^{3}J_{HH} = 6.6 \text{ Hz}$, CH(C**H**₃)₂).

¹³C{¹H} NMR (CD₂Cl₂): δ 163.0 (d, ¹J_{CP} = 77.3 Hz, NCO); 159.1 (d, ²J_{CP} = 10.9 Hz, NCCH₃); 136.9 (d, ³J_{CP} = 3.1 Hz, ipso-C of Ph); 129.5 (s, o-CH of PPh); 128.7 (s, p-CH of PPh); 127.1 (s, m-CH of PPh); 121.3 (q, ${}^{1}J_{CF}$ = 293.0 Hz, OC(**C**F₃)₃); 50.1 (s, **C**H(CH₃)₂); 46.2 (s, **C**H(CH₃)₂); 39.2 (d, ${}^{1}J_{CP}$ = 14.5 Hz, **C**(CH₃)₃); 33.8 $(d, {}^{2}J_{CP} = 34.6 \text{ Hz}, \text{NC}CH_{3}); 28.1 (s, C(CH_{3})_{3}); 25.2 (s, CH(CH_{3})_{2}); 19.7 (s, CH(CH_{3})_{2}).$

²⁷AI NMR (CD₂Cl₂): δ 34.2 (s, [AI(OC(CF₃)₃)₄]⁻).

¹⁹F{¹H} (CD₂Cl₂): δ -75.7 (s, OC(CF₃)₃).

NMR spectra of isolated compounds

Abbreviations

- deuterated solvent (residual signal) S
- g grease

- tBu₂PH
- impurity *i*Pr₂NBBr₂

Figure S2. $^{31}P\{^{1}H\}$ spectrum (CD₂Cl₂) of 3

Figure S8. ¹³C ¹H HMBC spectrum (CD₂Cl₂) of 3

13C_1H_HMQC

Figure S9. 27 Al spectrum (CD₂Cl₂) of 3

Figure S10. $^{19}F{}^{1}H$ spectrum (CD₂Cl₂) of **3**

27AI

11B

13C_1H_HMQC

Figure S20. $^{19}\mathsf{F}\{^1\mathsf{H}\}$ spectrum (CD₂Cl₂) of 4

Figure S22. ${}^{31}P{}^{1}H$ spectrum (CD₂Cl₂) of 5

13C_1H_HMQC

19F{1H}

Figure S30. $^{19}F{^1H}$ spectrum (CD₂Cl₂) of 5

11B

Figure S34. $^{13}C{^{1}H}$ spectrum (CD₂Cl₂) of 6

1H

13C_1H_HMQC

19F{1H}

Figure S40. $^{19}\mathsf{F}\{^1\mathsf{H}\}$ spectrum (CD₂Cl₂) of $\mathbf{6}$

Reaction of 1 with Li[Al(OC(CF₃)₃)₄] – monitoring of reaction progress by ¹¹B and ³¹P{¹H} NMR

Progress of the reaction between **1** (0.084 g, 0.25 mmol) and Li[Al(OC(CF₃)₃)₄] (0.244 g, 0.250 mmol) mixed at -50 °C in CD₂Cl₂ was monitored by ¹¹B and ³¹P{¹H} NMR. Spectra were recorded at -25 °C, 0 °C, 25 °C, and at 25 °C after 30 and 60 minutes.

Table S1. ¹¹B and ³¹P{¹H} NMR shifts for 1, and probable assignments of ¹¹B and ³¹P{¹H} NMR signals for 2 and 7

Figure S41. Monitoring of reaction progress by ¹¹B and ³¹P{¹H} NMR. Reaction of 1 with Li[Al(OC(CF₃)₃)₄]

X-ray structure analysis

Generally all structures exhibit high degree of disorder which is located mainly in the aluminate anion. The $[Al(OC(CF_3)_3)_4]^-$ anion has many modes of deformation which makes it difficult to model. We found useful a model in which trifluoromethyl tetrahedral groups are arranged with horizontal C-F bond going in clockwise or anticlockwise direction in both parts. Sometimes also tilting on O-atom of the whole alkoxy group must have been taken into account. Without any disorder model at the flexible anions, R₁ indices rise well above 20%.

X-ray structure analysis details

Diffraction intensity data for all crystals were collected on an IPDS 2T dual beam diffractometer (STOE & Cie GmbH, Darmstadt, Germany) at 120.0(2) K with Mo K α radiation of a microfocus X-ray source (GeniX 3D Mo High Flux, Xenocs, Sassenage, 50 kV, 1.0 mA, and λ = 0.71069 Å). Investigated crystals were thermostated under a nitrogen stream at 120 K using the CryoStream-800 device (Oxford CryoSystem, UK) during the entire experiment. Data collection and data reduction were controlled by using the X-Area 1.75 program (STOE, 2015). Absorption correction was not performed because data absorption coefficient < 0.5 mm⁻¹, for all data. The structures were solved using intrinsic phasing implemented in SHELXT and refined anisotropically using the program packages Olex2³ and SHELX-2015.^{4,5} Positions of hydrogen atoms were calculated geometrically taking into account isotropic temperature factors. All H-atoms were refined as riding on their parent atoms with the usual restraints.

Structure **3** contains two cations and two anions in the asymmetric unit (Z' = 2). Both symmetry independent cations are fully ordered. Anions turned out to be substantially disordered. Disorder of the anion with Al1 was modelled with CF₃ groups running clockwise and anticlockwise at pivot atom O2 in both parts (with site occupation factors of 0.849(5)/0.151(5)). Anion containing Al2 atom was modelled as disordered in all alkoxy branches at O7, O8, O9 and O10. Only O8 atom was left in one position and related CF₃ groups running in opposite directions with s.o.f. of 0.656(4)/0.344(4). The other groups were modelled as disordered over two positions with the following occupation factors: 0.781(8)/0.219(8) at O7, 0.778(9)/ 0.222(9) at O9 and 0.716(5)/ 0.284(5) at O10. Several restraints were necessary to make refinement stable.

Structure **4** contained one cation and one anion in the asymmetric unit. The cation position was well defined and the anion was again disordered, but less than in other structures. We applied disorder model of CF₃ running in opposite directions for alkyloxy groups hanging at O1 and O3. Terminal CF₃ groups bound to C22-O1 were refined as disordered over two positions with occupation

factors of 0.702(5)/0.298(5). Groups attached at C30-O3 were refined to s.o.f. of 0. 695(6)/0.305(6). Several restraints were applied to bond lengths in these parts to get stable refinement.

Structure **5** contains one positive and one negative ion in the asymmetric unit. The anion is again strongly disordered. Two perfuoro *t*-butoxy groups OC_4F_9 containing O2 and O3 were refined as disordered over two positions, with occupation factors of 0.702(7)/0.298(7) and 0.775(5)/0.225(5), respectively. Terminal CF₃ groups bound to C31-O4 were refined as disordered over two positions with occupation factors of 0.692(7)/0.308(7). Several restraints were applied to C-F and F-F distances in order to get stable refinement. The cation is placed in the well-defined position with relatively small displacement ellipsoids for all atoms.

Asymmetric unit of structure **6** contains one cation, one anion and a solvent molecule of dichloromethane (perhaps not fully occupied). The solvent was strongly disordered and was cut out using the solvent mask (squeeze) procedure.³ Program finds four voids of volume ca. 152Å³, containing 40.6 electron charge, each. Exceptionally, one finds some disorder also in the cation in structure **6**. One *tert*-butyl group C16-C19 was refined as disordered over two positions with s.o.f. of 0.68(3)/0.32(3). Disorder of the anion was more demanding. We found best results with a model where two perfuoro *t*-butoxy groups OC_4F_9 containing O3 and O5 were disordered over three positions with occupation factors of 0.666(3) / 0.127(3) / 0.207(3) and 0.418(3) / 0.290(3) / 0.292(3), respectively. Naturally, many restraints were applied to C-F, C-C and F-F distances in order to get stable, meaningful refinement.

Crystallographic data for all structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. **CCDC 2240178** – **2240181**. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/structures</u>.

	3	4	5	6
CCDC deposition No	2240178	2240179	2240180	2240181
Chemical formula	$C_{16}AIF_{36}O_4^-$ ·C ₂₁ H ₃₇ BN ₂ OP ⁺	$C_{16}AIF_{36}O_4^{-1}$ $\cdot C_{21}H_{46}BN_3P^{+1}$	$C_{16}AIF_{36}O_4^{-}$ $\cdot C_{18}H_{38}BN_3P^{+}$	$C_{16}AIF_{36}O_4^{-}$ $\cdot C_{23}H_{40}BN_3OP^{+}$
M _r [g⋅mol ⁻¹]	1342.44	1349.53	1305.43	1383.50
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P21/n	P21/c	P21/n	P21/c
Temperature [K]	120	120	120	120
<i>a</i> [Å]	17.0561(3)	10.5987(11)	18.6108(4)	14.2923(11)
b [Å]	40.9364(7)	16.314(3)	14.3902(4)	27.525(3)
<i>c</i> [Å]	17.3489(3)	32.120(3)	20.5231(4)	14.8101(11)
α [°]	90	90	90	90
β [°]	118.929(1)	98.263(1)	113.982(1)	94.220(6)
γ [°]	90	90	90	90
V [ų]	10601.8(3)	5496.1(13)	5021.9(2)	5810.3(8)
Z	8	4	4	4
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α
λ [Å]	0.71073	0.71073	0.71073	0.71073
Calculated density [g·cm ⁻¹]	1.682	1.631	1.727	1.582
μ [mm ⁻¹]	0.24	0.23	0.25	0.22
Crystal size [mm]	$0.24 \times 0.15 \times 0.13$	$0.37 \times 0.11 \times 0.09$	$0.37 \times 0.31 \times 0.27$	$0.43 \times 0.14 \times 0.07$
F(000)	5360	2712	2608	2768
R _{int}	0.028	0.046	0.032	0.043
No. of				
measured,	54894	45571	49002	50956
independent	21431	10771	9860	10678
and observed	16051	8023	8240	8106
$[l > 2\sigma(l)]$ reflections				
$R[F^2 > 2\sigma(F^2)]$	0.072	0.083	0.098	0.098
wR(F ²)	0.179	0.203	0.269	0.264
S	1.06	1.10	1.02	1.02
No. of reflections	21431	10771	9860	10678
No. of parameters	1788	875	915	1009
No. of restraints	88	75	114	358
Δ> _{max} [e·Å ⁻³]	0.68	0.89	1.08	1.20
∆> _{min} [e·Å ⁻³]	-0.58	-0.66	-0.69	-0.90

Table S2. Crystal data and structure refinement for 3, 4, 5, and 6

Figure S42. Molecular structure of 3⁺. The counterion and hydrogen atoms are omitted for clarity. The thermal ellipsoids are shown at the 40% probability level. Important bond distances [Å]: B1 – P1 1.964(4); B1 – N1 1.472(4); B1 – N2 1.371(4); P1 – C1 1.872(3); C1 – O1 1.194(4); C1 – N1 1.398 (4). Important angles [°]: N1 – B1 – N2 139.1(3); N2 – B1 – P1 132.2(3); P1 – B1 – N1 88.6(2); C1 – P1 – B1 72.40(15); B1 – P1 – C14 116.32(18); C14 – P1 – C18 120.7(2); C18 – P1 – C1 109.91(17); C1 – P1 – C14 109.91(17); C18 – P1 – B1 117.70(18); B1 – N1 – C1 104.3(3); C1 – N1 – C2 119.4(3); C2 – N1 – B1 136.3(3); B1 – N2 – C8 126.9(3); C8 – N2 – C11 114.3(3); C11 – N2 – B1 118.8(3); O1 – C1 – P1 135.4(3); P1 – C1 – N1 94.7(2); N1 – C1 – O1 129.9(3).

Figure S43. Molecular structure of 4⁺. The counterion and hydrogen atoms are omitted for clarity. The thermal ellipsoids are shown at the 40% probability level. Important bond distances [Å]: B1 – P1 1.963(5); B1 – N1 1.450(6); B1 – N3 1.382(6); P1 – C1 1.871(4); C1 – N1 1.411(5); C1 – N2 1.249(5). Important angles [°]: N1 – B1 – N3 138.7(4); N3 – B1 – P1 132.6(3); P1 – B1 – N1 88.7(3); C1 – P1 – B1 72.57(19); B1 – P1 – C14 115.1(2); C14 – P1 – C18 118.3(2); C18 – P1 – C1 113.9(2); C1 – P1 – C14 111.81(19); C18 – P1 – B1 116.6(2); B1 – N1 – C1 105.0(3); C1 – N1 – C2 120.1(3); C2 – N1 – B1 134.8(3); C1 – N2 – C5 121.0(4); B1 – N3 – C8 126.4(4); C8 – N3 – C11 113.5(3); C11 – N3 – B1 120.0(4); N1 – C1 – P1 93.6(3); P1 – C1 – N2 139.7(3); N2 – C1 – N1 126.7(4).

Figure S44. Molecular structure of 5⁺. The counterion and hydrogen atoms are omitted for clarity. The thermal ellipsoids are shown at the 40% probability level. Important bond distances [Å]: B1 − N1 1.483(6); B1 − N2 1.466(6); B1 − N3 1.387(6); P1 − C1 1.873(4); P1 − C2 1.879(4); C1 − C3 1.509(6); C1 − N1 1.261(5); C2 − C4 1.502(6); C2 − N2 1.259(5). Important angles [°]: N1 − B1 − N2 120.1(3); N2 − B1 − N3 121.8(4); N3 − B1 − N1 118.1(4); C1 − P1 − C2 100.57(18); C2 − P1 − C11 111.2(2); C11− P1 − C1 111.6(2); C11− P1 − C15 117.3(2); C15 − P1 − C1 107.06(19); C2 − P1 − C15 107.7(2); B1 − N1 − C1 125.2(3); B1 − N2 − C2 124.6(3); B1 − N3 − C5 121.2(4); C5 − N3 − C8 114.8(3); C8 − N3 − B1 123.9(4); N1 − C1 − P1 118.7(3); P1 − C1 − C3 120.0(3); C3 − C1 − N1 121.3(4); N2 − C2 − P1 119.5(3); P1 − C2 − C4 120.4(3); C4 − C2 − N2 120.1(4).

Figure S45. Molecular structure of 6⁺. The counterion and hydrogen atoms are omitted for clarity. The thermal ellipsoids are shown at the 40% probability level. Important bond distances [Å]: B1 − N1 1.494(6); B1 − N2 1.460(6); B1 − N3 1.375(7); P1 − C1 1.873(4); P1 − C2 1.870(5); C1 − O1 1.215(6); C1 − N1 1.356(6); C2 − C3 1.505(6); C2 − N2 1.258(6). Important angles [°]: N1 − B1 − N2 117.0(4); N2 − B1 − N3 119.6(4); N3 − B1 − N1 123.4(4); C1 − P1 − C2 102.2(2); C2 − P1 − C16 110.4(2); C16 − P1 − C1 105.8(2); C16 − P1 − C20 117.8(2); C20 − P1 − C1 105.9(2); C2 − P1 − C20 113.1(2); B1 − N1 − C1 122.6(4); C1 − N1 − C4 115.4(3); C4 − N1 − B1 121.6(4); B1 − N2 − C2 129.5(4); B1 − N3 − C10 123.4(4); C10 − N3 − C13 114.0(4); C13 − N3 − B1 122.5(4); O1 − C1 − P1 115.6(4); P1 − C1 − N1 118.0(3); N1 − C1 − O1 126.3(4); N2 − C2 − P1 116.3(3); P1 − C2 − C3 121.1(4); C3 − C2 − N2 122.6(4).

DFT calculations

General methods

The stationary point structures (energy minima and first-order saddle points) of all systems investigated in this work were calculated using density functional theory (DFT) method, especially ω B97xD⁶ hybrid functional with the 6-311++G(d,p)⁷ Pople's basis set of triple-zeta quality. The corresponding harmonic frequencies were computed at the same level of theory to characterize the nature of stationary points. The Gibbs free energies of resulted structures were estimated using ω B97xD/6-311++G(d,p) electronic energies, zero-point energy corrections, thermal corrections and entropy contributions at T = 298.15 K. The effects of surrounding solvent molecules (dichloromethane) were obtained using the polarizable continuum model (the integral equation formalism variant: IEFPCM).⁸ Natural Bond Orbital and Natural Resonance Theory computations were performed with the NBO 7.0 module.⁹ All calculations were completed with Gaussian16 (Rev.C.01) software,¹⁰ excluding NBO and NRT analyzes for which Gaussian 09 (Rev.D.01) program package was used.¹¹

Structures

Figure S46. The ω B97xD/6-311++G(d,p) equilibrium geometry of the **2**⁺ system. The hydrogen atoms are omitted for clarity. The bond lengths are given in Å.

Figure S47. The ω B97xD/6-311++G(d,p) equilibrium geometry of the **3**⁺ system. The hydrogen atoms are omitted for clarity. The bond lengths are given in Å.

Figure S48. The ω B97xD/6-311++G(d,p) equilibrium geometry of the 5⁺ system. The hydrogen atoms are omitted for clarity. The bond lengths are given in Å.

Figure S49. The ω B97xD/6-311++G(d,p) equilibrium geometry of the **6**⁺ system. The hydrogen atoms are omitted for clarity. The bond lengths are given in Å.

Figure S50. The ωB97xD/6-311++G(d,p) transition state structure (TS) found for the reaction of **2**⁺ with PhNCO. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Figure S51. The ω B97xD/6-311++G(d,p) transition state structure (TS1) found for the reaction of **2**⁺ with 2 equiv of MeCN. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Figure S52. The ω B97xD/6-311++G(d,p) transition state structure (TS2) found for the reaction of **2**⁺ with 2 equiv of MeCN. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Figure S53. The ωB97xD/6-311++G(d,p) intermediate product (IP1) found for the reaction of **2**⁺ with 2 equiv of MeCN. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Figure S54. The ωB97xD/6-311++G(d,p) intermediate product (IP2) found for the reaction of **2**⁺ with 2 equiv of MeCN. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Figure S55. The ωB97xD/6-311++G(d,p) intermediate product (IP3) found for the reaction of **2**⁺ with 2 equiv of MeCN. The hydrogen atoms are omitted for clarity. Selected interatomic distances are given in Å.

Cartesian coordinates

The Cartesian coordinates of all systems investigated in this contribution.

3+

2+

Р	1.177055000	-0.045296000	-0.643774000	
Ν	-1.873979000	-0.060724000	-0.059105000	
С	-2.658498000	-0.305970000	-1.315600000	
н	-1.915879000	-0.340142000	-2.117400000	
в	-0.549649000	-0.041777000	-0.148416000	
с	-2.605663000	0.125245000	1.229697000	
н	-3.631540000	-0.188691000	1.034474000	
с	2.006802000	-1.587810000	0.057486000	
c	-2.605250000	1.595924000	1.631472000	
H	-1.591877000	1.933452000	1.866408000	
н	-3.222382000	1.730448000	2.522077000	
н	-3.004794000	2.226652000	0.836346000	
с	1.797033000	1.984832000	1.281110000	
H	0.758271000	2.010937000	1.617875000	
н	2.229287000	2.977580000	1.443022000	
н	2.342142000	1.279227000	1.907237000	
C	-2.017471000	-0.777988000	2.306203000	
H	-2.032615000	-1.823088000	1.990656000	
н	-2.603739000	-0.684584000	3.222079000	
н	-0.986563000	-0.493023000	2.542081000	
c	1,896591000	1.643592000	-0.210062000	
č	-3.347709000	-1.662948000	-1.241299000	
н	-2.624059000	-2.456025000	-1.042826000	
н	-3 831833000	-1 866837000	-2 198308000	
н	-4 118738000	-1 687533000	-0 467456000	
c	-3 613312000	0.846301000	-1 594633000	
н	-4 389550000	0.925236000	-0.829723000	
н	-4 107305000	0.668500000	-2 551865000	
н	-3.076925000	1 795172000	-1 655237000	
c	3 362640000	1 658588000	-0.663212000	
н	3 978880000	0 975834000	-0.074026000	
н	3 762004000	2 666885000	-0 520235000	
н	3 466012000	1 400371000	-1 719932000	
c	1 085502000	2 658118000	-1 029944000	
н	1,160756000	2.467906000	-2.102839000	
н	1.477669000	3.660045000	-0.832072000	
н	0.027204000	2.660484000	-0.749723000	
c	2.565182000	-1.387436000	1.468446000	
н	3 372797000	-0.653164000	1 488923000	
н	2 981958000	-2 339125000	1 813497000	
н	1.792571000	-1.079715000	2.175550000	
c	3 137/199000	-1 972013000	-0 909957000	
й	2 754414000	-2 172444000	-1 913259000	
н	3 622379000	-2 881008000	-0 541693000	
н	3 900292000	-1 193748000	-0 980376000	
c	0 940878000	-2 692555000	0.063246000	
н	0.170058000	-2 510274000	0.816971000	
н	1 424505000	-3 642708000	0 307543000	
н	0 461529000	-2 808506000	-0 913070000	
	0.101020000		2.2 130, 0000	

Ρ	1.463920000	-0.700708000	-0.004197000
0	-0.311136000	-2.926435000	-0.134413000
Ν	-0.965616000	-0.677530000	-0.039750000
Ν	-0.184375000	1.871163000	0.033182000
С	-0.089481000	-1.751801000	-0.079459000
С	-2.381538000	-0.912494000	-0.023608000
С	-3.032959000	-1.044133000	1.195997000
н	-2.472085000	-0.945081000	2.118337000
С	-4.399610000	-1.293064000	1.213805000
H	-4.915271000	-1.389718000	2.161762000
С	-5.100200000	-1.420715000	0.018968000
Ĥ	-6.166300000	-1.614378000	0.035349000
c	-4.433827000	-1.308707000	-1.196819000
н	-4.976590000	-1.418151000	-2.128088000
c	-3.067111000	-1.059373000	-1.222158000
н	-2 534165000	-0.974024000	-2 162189000
c	-1 440446000	2 660555000	-0.030505000
н	-1 129028000	3 705354000	-0.030509000
r c	-1.123028000	2 421508000	1 228106000
ц	1 525207000	2.421558000	2 102508000
н ц	2 022664000	2.378033000	1 415909000
п	-3.023004000	3.120332000	-1.413606000
п С	-2.594567000	2.456020000	-1.391436000
	-2.300470000	2.450020000	1.207039000
н	-2.715936000	1.446225000	1.251106000
н	-3.146183000	3.154808000	1.185605000
н	-1.729416000	2.639783000	2.1165/2000
C	1.059054000	2.679709000	0.101441000
н	1.880658000	1.962165000	0.147594000
C	1.263176000	3.513855000	-1.1606/3000
н	1.240858000	2.883277000	-2.052763000
н	2.235406000	4.009813000	-1.115310000
Н	0.501540000	4.289537000	-1.2/0382000
C	1.123541000	3.512372000	1.378877000
н	0.356269000	4.290019000	1.402586000
н	2.095664000	4.006408000	1.441800000
Н	0.999362000	2.880083000	2.261225000
С	2.378528000	-0.840353000	-1.621484000
С	1.336047000	-0.513798000	-2.706746000
Н	0.509036000	-1.228220000	-2.716335000
Н	1.831359000	-0.572725000	-3.679117000
Н	0.927958000	0.495486000	-2.602403000
С	2.896204000	-2.273130000	-1.813836000
Н	3.706337000	-2.514600000	-1.125851000
Н	3.290465000	-2.356230000	-2.830380000
Н	2.103508000	-3.015943000	-1.699604000
С	3.531012000	0.170430000	-1.689076000
Н	3.198575000	1.198587000	-1.527429000
Н	3.964063000	0.120326000	-2.691845000
Н	4.326184000	-0.058278000	-0.979172000
С	2.308120000	-0.993201000	1.630244000
С	2.961192000	-2.382477000	1.650503000
Н	2.266858000	-3.169972000	1.348531000
Н	3.278526000	-2.591190000	2.675822000
Н	3.848437000	-2.429182000	1.018601000
С	1.192847000	-0.927317000	2.689476000
Н	0.657855000	0.026252000	2.676116000
н	1.657491000	-1.030303000	3.673363000
н	0.471256000	-1.740223000	2.578940000
С	3.347348000	0.102316000	1.903753000
н	4.149050000	0.113449000	1.164813000
н	3.801007000	-0.101549000	2.877622000
Н	2.898687000	1.096664000	1.954684000
В	-0.087123000	0.502051000	0.011112000

Ρ	1.568326000	0.049771000	-0.063024000
Ν	-0.673155000	1.257589000	-1.044740000
Ν	-0.691977000	-1.279250000	-0.816633000
Ν	-2.719621000	0.068496000	-0.319535000
С	0.550802000	1.447328000	-0.826711000
c	0.532785000	-1.445380000	-0.580573000
ĉ	1 435950000	0 170053000	1 810961000
c	0.033810000	0.691361000	2 161042000
н	-0 135918000	1 709056000	1 804745000
ц	-0.155518000	0.600260000	2 250687000
н	-0.055200000	0.035200000	1 779344000
Ċ	2 /02851000	1 121004000	2 260427000
ц	2.492851000	0.725855000	2.309427000
п	2 206867000	1 254764000	2.206520000
п	2.290807000	1.234704000	3.437672000
	2.440/51000	2.121238000	1.911075000
с 	1.614236000	-1.226987000	2.425511000
н	0.794342000	-1.895503000	2.154480000
н	1.601/43000	-1.11/316000	3.513004000
н	2.561654000	-1.695336000	2.155177000
С	3.296994000	-0.038661000	-0.790264000
С	4.096446000	1.265296000	-0.611158000
Н	3.688054000	2.094760000	-1.182095000
Н	5.101329000	1.074519000	-0.997062000
Н	4.201247000	1.568993000	0.428265000
С	4.096658000	-1.174372000	-0.129453000
Н	4.323844000	-0.953524000	0.914835000
Н	5.049689000	-1.257838000	-0.658274000
н	3.609470000	-2.145530000	-0.185658000
С	3.117542000	-0.295260000	-2.297796000
н	2.633548000	-1.246650000	-2.518017000
н	4.109127000	-0.316391000	-2.756874000
н	2.547247000	0.499291000	-2.785142000
с	-3.402905000	1.368825000	-0.165574000
н	-2.681837000	2.119734000	-0.487432000
C	-3.747618000	1.655484000	1,296125000
н	-4.484289000	0.950577000	1,691999000
н	-4 170662000	2 659143000	1 384293000
н	-2 853098000	1 604693000	1 921781000
Ċ	-4 620356000	1.004055000	-1 083168000
ц	-4.020330000	1.478122000	2 120001000
ц	5 026280000	2 486580000	1 018026000
н Ц	-3.030380000 E 412667000	2.480380000	-1.018930000
	-3.413007000	1 1 2 2 4 2 4 0 0 0	-0.808998000
C 	-3.521284000	-1.122424000	0.044729000
	-4.499872000	-0.742637000	0.342532000
с 	-3.750816000	-2.045857000	-1.150648000
н	-4.186427000	-1.488803000	-1.983572000
н	-4.444106000	-2.843914000	-0.8/1499000
Н	-2.814699000	-2.497513000	-1.481694000
С	-2.954309000	-1.858811000	1.258071000
н	-1.994070000	-2.324275000	1.026749000
н	-3.647357000	-2.644985000	1.568899000
Н	-2.821243000	-1.173270000	2.099087000
В	-1.391226000	0.011535000	-0.726330000
С	1.210506000	2.760540000	-1.125798000
н	1.827165000	3.103830000	-0.292281000
н	0.429481000	3.492944000	-1.326584000
н	1.848935000	2.681284000	-2.009425000
С	1.161269000	-2.807906000	-0.655028000
н	1.921305000	-2.865220000	-1.435927000
н	0.372218000	-3.525107000	-0.878315000
н	1.633783000	-3.080517000	0.290821000

Р	2.059250000	0.087554000	-0.024819000
0	0 839193000	2 /01007000	0 516968000
	0.035155000	2.401007000	0.010000000
N	-0.636276000	0.755321000	-0.084556000
Ν	0.162941000	-1.291172000	-1.334400000
Ν	-1.948600000	-1.409415000	-0.060919000
c	0 502222000	1 267785000	0 17/702000
c	0.392232000	1.207783000	0.174702000
C	-1./3530/000	1.690983000	-0.132052000
С	-2.396712000	1.859872000	-1.341655000
н	-2.067193000	1.312313000	-2.217836000
c	2 182126000	2 72/969000	1 416044000
	-3.482420000	2.724808000	-1.410044000
н	-4.00201/000	2.853154000	-2.358211000
С	-3.896810000	3.419344000	-0.285938000
н	-4.744761000	4.091796000	-0.342599000
c	2 220278000	2 252581000	0.010016000
	-3.220378000	3.232381000	0.919010000
н	-3.539015000	3.795051000	1.801318000
С	-2.135709000	2.389731000	1.000104000
н	-1.608663000	2.253268000	1.936941000
c	2 2/2887000	1 861555000	2 207608000
с 	2.545667000	-1.801555000	-2.207008000
н	2.748329000	-1.188487000	-2.968269000
Н	1.786232000	-2.654784000	-2.704606000
н	3.184035000	-2.292520000	-1.658323000
c	1 409242000	1 1 2 2 4 0 0 0 0 0	1 206686000
c	1.408243000	-1.128490000	-1.290080000
С	-2.793604000	-0.993888000	1.078862000
н	-2.324867000	-0.107234000	1.501817000
С	-2.805117000	-2.044181000	2,192377000
ц	2 211685000	2 965050000	1 902229000
	-3.311083000	-2.903030000	1.893238000
н	-3.339032000	-1.641338000	3.056173000
Н	-1.790540000	-2.297315000	2.508155000
С	-4.206954000	-0.612200000	0.641881000
ц Ц	1 100050000	0 175294000	0 112102000
п	-4.160656000	0.175264000	-0.115192000
н	-4.//1036000	-0.245144000	1.502679000
Н	-4.748559000	-1.469230000	0.231900000
С	-2.332594000	-2.695949000	-0.693876000
ц	2 270160000	2 077250000	0.220220000
	-3.279109000	-2.977330000	-0.230220000
C	-2.615603000	-2.531124000	-2.185806000
н	-3.347911000	-1.736074000	-2.347335000
н	-3.025134000	-3.461660000	-2.587462000
н	-1 705575000	-2 290085000	-2 737340000
~	1.705575000	2.230003000	2.737340000
C	-1.342656000	-3.822956000	-0.401020000
н	-0.396187000	-3.656760000	-0.918475000
Н	-1.758239000	-4.775168000	-0.741453000
н	-1.147176000	-3,900599000	0.670901000
<u> </u>	2 200875000	0.764710000	1 621757000
C	2.290875000	-0.764710000	1.031/5/000
н	2.740001000	1.118776000	2.685843000
С	3.697787000	-1.369861000	1.725540000
н	3.911306000	-2.065544000	0.910770000
ц	2 7525/7000	1 02//76000	2 650760000
	3.733347000	-1.934470000	2.039709000
н	4.475417000	-0.606430000	1.759376000
С	3.471570000	1.136483000	-0.662233000
С	2.923696000	1.909218000	-1.876580000
н	2 496146000	1 247284000	-2 635268000
	2.450140000	2 420171000	2.035200000
п	3.760072000	2.438171000	-2.340308000
н	2.176110000	2.647711000	-1.588506000
С	4.663446000	0.272165000	-1.110597000
н	5 052371000	-0 369818000	-0 322213000
	5.052571000 F 462476000	0.061850000	1 202066000
п	5.403470000	0.901859000	-1.392066000
Н	4.442825000	-0.336239000	-1.984759000
С	3.949512000	2.112219000	0.426544000
н	3.138859000	2.720929000	0.822734000
н	1 681202000	2 778/76000	-0.033675000
	4.004302000	2.770470000	0.033073000
н	4.450973000	1.592579000	1.245097000
В	-0.845810000	-0.670446000	-0.479540000
С	1.244751000	-1.882252000	1.752718000
Ĥ	0 222282000	-1 50/215000	1 697/02000
11	0.222202000	-1.304313000	1.03/402000
н	1.365235000	-2.342477000	2./36/61000
Н	1.371442000	-2.661728000	0.999271000
С	2.068719000	0.262651000	2.753163000
н	2 260149000	-0 239264000	3 705176000
 U	1 020714000	0 637051000	2 77020000
п	1.039714000	0.02/851000	2.770809000

Р	1.691520000	-0.877272000	0.458408000
0	-0.742730000	-1.448133000	3.209664000
Ν	-1.347870000	-0.656935000	1.055306000
Ν	-0.029524000	1.683841000	-0.118441000
С	-1.087058000	-1.092218000	2.169685000
c	-2.581197000	-0.795091000	0.346806000
C	-3.779598000	-1.001617000	1.023037000
н	-3 796133000	-1 074140000	2 104912000
c	-4 959734000	-1 099040000	0 298460000
н	-5 893219000	-1 260344000	0.824209000
c	-4 947615000	-0.983780000	-1 087846000
н	-5 872636000	-1 056118000	-1 646902000
c	-3 7//920000	-0 776127000	-1 752171000
н	-3 72/038000	-0.687361000	-2 83171/000
c	-2 5585/1000	-0.681861000	-1 036/31000
н	-2.558541000	-0.001001000	-1.050451000
C	-1.022080000	2 612051000	0.758508000
ц	0.589722000	2.013931000	0.758558000
п С	-0.366723000	2 411516000	0.552629000
L L	-2.515769000	2.411510000	0.715018000
	-2.0/0321000	2.231305000	-0.298783000
	-2./91/62000	3.317850000	1.091422000
	-2.627776000	1.583457000	1.347599000
C	-0.266413000	2.574004000	2.185203000
н	-0.402502000	1.58/280000	2.637739000
н	-0.81/430000	3.291776000	2.795836000
Н	0.792559000	2.832394000	2.223781000
С	0.406681000	2.206990000	-1.460611000
н	0.951291000	1.382432000	-1.930606000
С	-0.803178000	2.523612000	-2.333101000
н	-1.477827000	1.669508000	-2.410458000
н	-0.457370000	2.781615000	-3.335952000
Н	-1.362377000	3.377311000	-1.943001000
С	1.353387000	3.396868000	-1.345148000
н	0.852011000	4.288126000	-0.962637000
н	1.728885000	3.636228000	-2.342315000
Н	2.210416000	3.178632000	-0.707837000
С	1.496615000	-2.162829000	-0.934407000
С	0.294031000	-3.049598000	-0.580582000
н	0.411473000	-3.515043000	0.400952000
н	0.219486000	-3.846962000	-1.326540000
н	-0.648623000	-2.503371000	-0.596784000
С	2.752298000	-3.046052000	-0.949315000
н	3.635734000	-2.507742000	-1.294864000
Н	2.580340000	-3.871024000	-1.647198000
Н	2.961548000	-3.477822000	0.032340000
С	1.292043000	-1.538311000	-2.319108000
н	0.354637000	-0.979572000	-2.376904000
н	1.242695000	-2.334766000	-3.068858000
н	2.107432000	-0.869614000	-2.598276000
С	3.358882000	0.026881000	0.452853000
С	4.391000000	-0.911997000	1.103603000
н	4.060588000	-1.245847000	2.090378000
н	5.328426000	-0.361369000	1.230283000
н	4.606091000	-1.790665000	0.496533000
С	3.191668000	1.239117000	1.381273000
н	2.522940000	1.992852000	0.966087000
н	4.169117000	1.708746000	1.525087000
н	2.812531000	0.947368000	2.364585000
С	3.856722000	0.478993000	-0.921833000
н	4.057339000	-0.364318000	-1.584728000
н	4.797224000	1.025691000	-0.797801000
н	3.149926000	1.145817000	-1.418964000
В	0.422904000	0.448481000	0.161445000

Р	1.282802000	0.368834000	-0.076321000
Ν	-0.792739000	2.088936000	-0.099744000
Ν	-1.816856000	-0.207989000	0.063777000
С	0.185629000	2.729623000	-0.259904000
С	1.786330000	-0.738565000	-1.517243000
С	0.830578000	-0.372513000	-2.665080000
н	-0.200588000	-0.662056000	-2.450033000
н	1.141250000	-0.895370000	-3.574868000
н	0.847589000	0.700815000	-2.879491000
С	1.747317000	-2.249178000	-1.269225000
н	2.443540000	-2.553363000	-0.485544000
н	2.045518000	-2.764742000	-2.188383000
н	0.749857000	-2.606591000	-1.007598000
С	3.211513000	-0.327998000	-1.929408000
н	3.275570000	0.743703000	-2.134832000
н	3.485232000	-0.864905000	-2.843419000
н	3.951493000	-0.575080000	-1.166779000
С	1.907342000	-0.226548000	1.598399000
С	1.256069000	-1.513693000	2.115466000
н	0.190046000	-1.371711000	2.300081000
н	1.718168000	-1.784736000	3.070798000
н	1.384820000	-2.357337000	1.436624000
С	3.430610000	-0.400026000	1.534927000
н	3.717035000	-1.271381000	0.942281000
н	3.813124000	-0.552835000	2.549135000
н	3.925885000	0.481931000	1.119400000
С	1.571469000	0.916309000	2.572410000
н	2.066475000	1.848382000	2.288538000
н	1.912373000	0.645861000	3.576671000
н	0.493221000	1.098161000	2.632844000
с	-1.710035000	-1.677257000	0.194532000
н	-0.643267000	-1.884850000	0.265544000
С	-2.249737000	-2.403116000	-1.035481000
н	-3.326391000	-2.259633000	-1.156005000
н	-2.069376000	-3.475154000	-0.928377000
н	-1.753840000	-2.064267000	-1.946899000
с	-2.362955000	-2.173086000	1.483909000
H	-2.006834000	-1.609536000	2.348854000
н	-2.113023000	-3.225784000	1.632372000
н	-3.452295000	-2.094014000	1.449166000
с	-3.203172000	0.331773000	-0.016550000
н	-3.859463000	-0.536524000	0.045095000
с	-3.535760000	1.229437000	1.172096000
H	-3.333071000	0.713988000	2.113346000
н	-4.596615000	1.489338000	1.144975000
н	-2.960433000	2.157054000	1.149463000
с	-3.467300000	0.996484000	-1.365292000
н	-2.894831000	1.919460000	-1.479133000
н	-4.527774000	1.245890000	-1.447443000
н	-3.208378000	0.321241000	-2.184005000
В	-0.696651000	0.576067000	0.007265000
с	1.031914000	3.876674000	-0.482588000
Н	0.395642000	4.764203000	-0.547479000
н	1.582021000	3.736074000	-1.414008000
н	1.736841000	3.974375000	0.343562000

TS2

Ρ	-1.692638000	0.138989000	0.018646000
Ν	0.568785000	-0.611920000	-1.330661000
Ν	0.969119000	1.692579000	-0.468465000
Ν	2.766815000	-0.035963000	-0.297211000
С	-0.688601000	-0.794328000	-1.268132000
С	0.016126000	2.267505000	-0.128378000
С	-1.483117000	-0.997970000	1.524999000
С	-0.086661000	-0.702788000	2.094966000
н	0.707663000	-0.963966000	1.393174000
н	0.066312000	-1.309214000	2.993420000
н	0.026278000	0.348233000	2.375013000
С	-1.580279000	-2.490997000	1.189600000
н	-2.530757000	-2.751815000	0.720672000
н	-1.497063000	-3.069581000	2.115545000
н	-0.767486000	-2.809256000	0.532001000
С	-2.524002000	-0.636778000	2.592323000
н	-2.529590000	0.433112000	2.816731000
н	-2.272123000	-1.168713000	3.514990000
н	-3.531612000	-0.942313000	2.306237000
С	-3.478606000	0.282929000	-0.572484000
С	-4.277299000	-1.020833000	-0.674356000
н	-3.836285000	-1.735308000	-1.368900000
н	-5.285719000	-0.790627000	-1.034002000
н	-4.382399000	-1.506514000	0.297667000
С	-4.204247000	1.239614000	0.394950000
н	-4.370031000	0.801831000	1.378023000
н	-5.185121000	1.479661000	-0.027102000
н	-3.661854000	2.179495000	0.524906000
С	-3.421733000	0.996316000	-1.936627000
н	-2.888346000	1.948792000	-1.869471000

Н	-4.443492000	1.214562000	-2.261363000
Н	-2.950817000	0.404204000	-2.720862000
С	3.243222000	-1.424387000	-0.487171000
Н	2.409600000	-1.958228000	-0.944709000
С	3.560582000	-2.107832000	0.842357000
Н	4.407719000	-1.642115000	1.353518000
Н	3.820192000	-3.153221000	0.660206000
Н	2.699010000	-2.082868000	1.513442000
С	4.417684000	-1.476216000	-1.463002000
Н	4.148958000	-1.005789000	-2.411591000
Н	4.685123000	-2.517436000	-1.658300000
Н	5.306531000	-0.976465000	-1.067944000
С	3.718732000	0.897102000	0.346564000
Н	4.639530000	0.328916000	0.484251000
С	4.068346000	2.081813000	-0.552259000
Н	4.409210000	1.731995000	-1.529166000
Н	4.872330000	2.663614000	-0.094655000
Н	3.214992000	2.746821000	-0.700574000
С	3.255471000	1.322999000	1.739544000
Н	2.379566000	1.973903000	1.696456000
Н	4.054433000	1.874941000	2.240731000
Н	3.007067000	0.450134000	2.347093000
В	1.480452000	0.286619000	-0.690807000
С	-1.306998000	-1.787576000	-2.214353000
Н	-1.737565000	-2.618498000	-1.649295000
Н	-0.535298000	-2.169685000	-2.882624000
Н	-2.111900000	-1.351942000	-2.805714000
С	-0.806369000	3.378634000	0.301363000
Н	-1.651437000	3.497589000	-0.376118000
Н	-0.188411000	4.279822000	0.301153000
н	-1.176439000	3.171885000	1.306446000

-			
Р	1.276454000	0.758147000	-0.340879000
Ν	-1.367905000	1.644381000	-0.418294000
Ν	-1.444740000	-0.748510000	0.135925000
С	-1.716958000	2.713462000	-0.631096000
С	2.106575000	-0.569860000	-1.414374000
С	1.142744000	-0.819578000	-2.584756000
н	0.214941000	-1.295727000	-2.263146000
н	1.620800000	-1.477633000	-3.317628000
н	0.885042000	0.113897000	-3.094778000
С	2.512595000	-1.898522000	-0.770449000
н	3.203076000	-1.753932000	0.062805000
н	3.031196000	-2.509034000	-1.517999000
н	1 661838000	-2 481581000	-0.419013000
c	3 374869000	0.092902000	-1 987904000
н	3 140522000	1 033937000	-2 491345000
ц.	2 822255000	0.581/27000	2,720028000
	4 110252000	0.381437000	1 216022000
	4.119353000	0.296506000	-1.216032000
C	1.946764000	0.815738000	1.431429000
C	1.6/1636000	-0.403506000	2.315408000
н	0.602375000	-0.52/919000	2.492783000
н	2.148362000	-0.256908000	3.291195000
н	2.065487000	-1.329427000	1.893903000
С	3.459316000	1.068375000	1.364873000
н	4.002685000	0.189774000	1.009836000
н	3.829491000	1.298400000	2.369576000
н	3.702631000	1.912142000	0.713495000
С	1.267628000	2.040203000	2.069364000
н	1.477059000	2.955623000	1.510307000
н	1.640755000	2.171518000	3.090517000
н	0.181336000	1.915087000	2.135322000
С	-0.857655000	-2.033818000	0.581526000
н	0.210292000	-1.848078000	0.654555000
с	-1.082958000	-3.162224000	-0.422879000
н	-2,138337000	-3,431933000	-0.509970000
н	-0 545141000	-4 051040000	-0.084629000
н	-0 712641000	-2 901335000	-1 414856000
c	-1 353181000	-2 422329000	1 975225000
н	-1 252/29000	-1 595/137000	2 680540000
 Ц	-1.232423000	2 250565000	2.000540000
	2 208406000	2 741290000	1 069470000
п С	-2.596400000	-2.741369000	1.908479000
C	-2.932059000	-0.766457000	0.028843000
н	-3.219924000	-1./92/88000	0.253113000
C	-3.614156000	0.104467000	1.082518000
н	-3.232831000	-0.12/38/000	2.078725000
н	-4.687430000	-0.098887000	1.072470000
н	-3.480026000	1.171247000	0.901415000
С	-3.408183000	-0.496697000	-1.396767000
н	-3.235627000	0.533458000	-1.711534000
н	-4.482161000	-0.686042000	-1.459395000
Н	-2.901269000	-1.161237000	-2.099592000
В	-0.637354000	0.335819000	-0.133296000
С	-2.172738000	4.048602000	-0.898935000
Н	-2.767099000	4.040292000	-1.814404000
Н	-1.307226000	4.701921000	-1.020768000
Н	-2.786334000	4.387968000	-0.062508000

Ρ	-1.107257000	-0.131644000	-0.022978000
Ν	0.443780000	-2.027279000	-0.266994000
Ν	1.984891000	0.069841000	0.013577000
С	-0.841657000	-1.958756000	-0.256204000
С	-1.829121000	0.701108000	-1.525362000
С	-1.292395000	-0.069403000	-2.743150000
н	-0.198910000	-0.092796000	-2.767593000
н	-1.630913000	0.443586000	-3.647040000
н	-1.665392000	-1.095142000	-2.784884000
С	-1.318436000	2.149863000	-1.585234000
н	-1.621856000	2.744119000	-0.723002000
н	-1.741288000	2.621502000	-2.476549000
н	-0.231169000	2.191783000	-1.676507000
С	-3.361128000	0.667352000	-1.506722000
н	-3.753137000	-0.346550000	-1.396306000
н	-3.725518000	1.062091000	-2.459109000
н	-3.773072000	1.293663000	-0.713567000
C	-1.841189000	0.262601000	1.643612000
Ĉ	-1.901363000	1,783643000	1.837176000
н	-0.928428000	2,260389000	1.690582000
н	-2 215190000	1 985551000	2 864861000
н	-2 629956000	2 252823000	1 173613000
c	-3 239837000	-0 354624000	1 788686000
н	-3 961073000	0.071452000	1.091849000
н	-3 597068000	-0 149906000	2 801802000
н	-3 22858/000	-1 / 38/07000	1 6579/6000
Ċ	-9.228984000	-1.430407000	2 680858000
L L	-0.890710000	1 444210000	2.000050000
п	-0.800987000	-1.444210000	2.571490000
	-1.291707000	0.139428000	2 621162000
п С	2 022624000	1 526297000	2.031103000
L L	2.023024000	1.550567000	0.163400000
п С	0.979546000	1.057990000	1.018464000
C	2.070249000	2.210830000	-1.018464000
н	3.731820000	1.970670000	-1.103509000
н	2.587806000	3.301130000	-0.916878000
н	2.173823000	1.915161000	-1.944405000
C	2.670030000	1.934403000	1.509708000
н	2.1605/1000	1.456522000	2.349702000
н	2.602362000	3.01/026000	1.63/3/6000
н	3.727705000	1.661634000	1.54/131000
C	3.288803000	-0.638676000	-0.059116000
н	4.058250000	0.128389000	0.041/88000
C	3.446784000	-1.612639000	1.105481000
н	3.311072000	-1.098459000	2.059790000
н	4.447821000	-2.050106000	1.088826000
н	2.717645000	-2.423355000	1.037037000
С	3.474704000	-1.308724000	-1.417781000
н	2.743440000	-2.107571000	-1.561137000
Н	4.474838000	-1.743983000	-1.481771000
Н	3.363336000	-0.581276000	-2.225128000
В	0.798624000	-0.599136000	-0.082881000
С	-1.797791000	-3.083882000	-0.389149000
Н	-2.294738000	-3.259191000	0.569770000
Н	-1.268392000	-3.989365000	-0.686245000
н	-2.577399000	-2.847769000	-1.117425000

IP	3
----	---

Ρ	1.598533000	0.000330000	0.285241000
Ν	-0.458050000	0.073264000	-1.490241000
Ν	-1.238792000	-1.860107000	-0.189804000
Ν	-2.574526000	0.250922000	-0.122136000
С	0.804270000	0.201779000	-1.416528000
С	-0.981599000	-2.953118000	0.021752000
С	1.864160000	1.817312000	0.775800000
С	0.468915000	2.322794000	1.172201000
Н	-0.210523000	2.320231000	0.317405000
Н	0.542217000	3.355548000	1.529179000
Н	0.025812000	1.716367000	1.966732000
С	2.424733000	2.752631000	-0.301796000
Н	3.375595000	2.408415000	-0.710218000
Н	2.593883000	3.740040000	0.141431000
Н	1.718954000	2.887078000	-1.124696000
С	2.771988000	1.859435000	2.012687000
Н	2.447702000	1.156048000	2.784941000
Н	2.737625000	2.866064000	2.442061000
Н	3.813167000	1.647013000	1.762075000
С	3.245748000	-0.890193000	0.003086000
С	4.359008000	-0.131842000	-0.725278000
Н	4.067177000	0.191228000	-1.724992000
Н	5.228491000	-0.789689000	-0.833331000
Н	4.684602000	0.744421000	-0.161352000
С	3.759596000	-1.320050000	1.391247000
Н	4.098470000	-0.476596000	1.992810000
Н	4.612503000	-1.994239000	1.259495000
Н	2.991753000	-1.856162000	1.955934000
С	2.894762000	-2.181377000	-0.759087000

н	2.140044000	-2.763661000	-0.221764000
Н	3.791327000	-2.803863000	-0.842074000
н	2.528664000	-1.999804000	-1.770819000
С	-2.820732000	1.631001000	-0.599216000
н	-1.910075000	1.931945000	-1.120057000
С	-3.052195000	2.615957000	0.547142000
н	-4.027837000	2.476898000	1.019664000
н	-3.023236000	3.635199000	0.155129000
н	-2.281883000	2.521821000	1.313814000
С	-3.963451000	1.659204000	-1.613235000
н	-3.752873000	0.989594000	-2.450193000
н	-4.088289000	2.672458000	-2.002551000
н	-4.911852000	1.359438000	-1.157968000
С	-3.634119000	-0.338348000	0.727582000
н	-4.384914000	0.444197000	0.839366000
С	-4.348601000	-1.516507000	0.064649000
н	-4.674893000	-1.249287000	-0.942546000
н	-5.230731000	-1.782320000	0.652149000
н	-3.720547000	-2.406389000	-0.002295000
С	-3.125068000	-0.655814000	2.132703000
н	-2.382580000	-1.457159000	2.130720000
н	-3.957258000	-0.974653000	2.765002000
н	-2.669077000	0.229144000	2.581557000
В	-1.428757000	-0.395549000	-0.556821000
С	1.569136000	0.500560000	-2.677668000
н	2.290698000	1.304208000	-2.536865000
н	0.871444000	0.763251000	-3.473304000
н	2.132045000	-0.382999000	-2.989536000
С	-0.672347000	-4.325316000	0.313302000
н	-0.157415000	-4.763720000	-0.543134000
н	-1.600501000	-4.865052000	0.509333000
н	-0.027575000	-4.359412000	1.193590000

References

- 1 N. Szynkiewicz, A. Ordyszewska, J. Chojnacki and R. Grubba, *RSC Adv.*, 2019, **9**, 27749–27753.
- 2 I. Krossing, *Chem. A Eur. J.*, 2001, **7**, 490–502.
- 3 O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 4 G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- 5 G. M. Sheldrick, *Acta Cryst. C*, 2015, **71**, 3–8.
- 6 J. Da Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Physicsournal Chem. Phys.*, 1980,
 72, 650–654.
- 8 S. Miertuš, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, **55**, 117–129.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P.
 Karafiloglou, C. R. Landis and F. Weinhold, *NBO 7.0.*, Theoretical Chemistry Institute,
 University of Wisconsin, Madison, 2018.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cro, J. Cioslowski and D. J. Fox, *Gaussian16*, Gaussian, Inc., Wallingford CT, 2016.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,

T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT, 2009.