Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Figure S1. The [Cu₁₂] tetracapped square prism in **4**, highlighting the coordination of the OH⁻, L⁸⁻ and NO₃⁻ ions.

Figure S2. The bonding modes of L (left), Me-dea (middle) and NO₃ (right) in **4**. The latter is μ_3 -bridging but with two further contacts to two Cu ions (Cu4, Cu6).

Figure S3. The H-bonded $-Cu_{16}-H_2O-H_6L$ - chains in the crystal structure of **4**. The Cu ions are in polyhedral format and the remaining atoms ball and stick. The H-bonds are shown as dashed lines. H atoms omitted for clarity.

Figure S4. The extended structure in **4** viewed down the *a*-axis highlighting the connection between the cluster in polyhedral format, the H_6L^2 counter anions (space fill) and the solvent molecules of crystallisation.

Figure S5. The extended structure in **4** viewed down the *b*-axis highlighting the connection between the cluster in polyhedral format, the H_6L^2 counter anions (space fill) and the solvent molecules of crystallisation.

Figure S6. The extended structure in **4** viewed down the *c*-axis highlighting the connection between the cluster in polyhedral format, the H_6L^{2-} counter anions (space fill) and the solvent molecules of crystallisation.

Figure S7. VTVB data of **4** in the temperature range 2 to 10 K and field range 1 to 9 T. The solid lines are a fit of the data assuming an isolated *S* = 1 state, affording *D* = -8.5 cm⁻¹ with *g* fixed to *g* = 2.0 [$\hat{H} = \sum_{i} D_i (\hat{S}_z^2 - S(S+1)/3)$].

Figure S8. The three pentametallic models 4A-C and the bimetallic model 4D employed to calculate the magnetic exchange interactions in 4.

J	cm⁻¹	Avg. Cu-O-Cu	Avg. Cu-O	Cu-O-Cu-O	Cu…Cu	Bridging group(s)
		Angle (°)	Distance (Å)	Dihedral	Distance (Å)	
				Angle (°)		
J _{Cu1-Cu3}	+6.9	95.9	2.108	23.6	3.118	μ-OH, μ-OPh
J _{Cu1-Cu4}	-16.6	101.6	2.091	10.3	3.223	μ ₃ -OH, μ-OPh
J _{Cu1-Cu5} /J _{Cu1-Cu6}	-25.3	120.0/120.6	1.962/1.971		3.400/3.424	μ-OPh
J _{Cu2-Cu3}	-17.7	119.0	2.038		3.514	μ-OPh
J _{Cu2-Cu4} *	-55.7	131.7	2.010		3.668	μ-OPh
J _{Cu2-Cu5}	-22.0	102.8	2.087	1.1	3.251	μ-OH, μ-OPh
J _{Cu2-Cu6}	-7.5	100.2	2.081	16.4	3.183	μ-OH, μ-OPh
J _{Cu3-Cu4}	-30.8	125.7	1.957		3.482	μ-ΟΗ
J _{Cu4-Cu7}	-11.6	103.2	2.014	5.5	3.146	μ-O(NO ₂), μ-OR
J _{Cu5-Cu6}	-3.9	107.2	1.947		3.135	μ-OH
J _{Cu6-Cu8}	+2.6	98.1	2.049	16.9	3.086	μ-O(NO ₂), μ-OR
J _{Cu7-Cu8}	-9.9	114.6	1.930		3.249	η¹, η¹, η², μ₄-NO₃, μ-OR

*Estimated using bimetallic model 4D.

 Table S2. DFT estimated magnetic exchange interactions alongside the pertinent structural parameters for

$$\hat{H} = -2\sum_{i,j>i} J_{ij} \,\hat{S}_i \cdot \,\hat{S}_j$$
form

complex 4. Calculations are based on the

formalism.

Figure S9. DFT estimated magnetic exchange interactions plotted versus the Cu-O-Cu angle (°) for pairs of nearest neighbour Cu ions in **4**. The upper graph shows Cu ions linked by two different bridging ligands, the lower graph shows Cu ions linked by one bridging ligand. The magneto-structural correlation reveals that the sign and magnitude of *J* strongly depends on the Cu-O-Cu angle, with larger Cu-O-Cu angles leading to strong antiferromagnetic exchange whose magnitude decreases with decreasing angle. The small deviation observed for $J_{(Cu4-Cu7)}$ is due to a counter-complementarity effect due to the presence of μ_2 -OR/O(NO₂) groups. The deviation for $J_{(Cu7-Cu8)}$ is due to the near-negligible contribution to the exchange through the nitrate anion. This pathway therefore resembles a one ligand bridge and thus we include it in both plots. See the main text for details.

Figure S10. DFT estimated spin density plot (top) and values (bottom) for model **4A** with the isodensity surface value 0.003 e bohr⁻³.

Figure S11. DFT estimated spin density plot (top) and values (bottom) for model **4B** with the isodensity surface value 0.003 e bohr⁻³.

Figure S12. DFT estimated spin density plot (top) and values (bottom) for model **4C** with the isodensity surface value 0.003 e bohr⁻³.

Figure S13. DFT estimated spin density plot (top) and values (bottom) for model **4D** with the isodensity surface value 0.003 e bohr⁻³.

Figure S14. The three dimetallic model complexes (top) used to calculate the magnetic exchange interactions mediated solely through the nitrate anions between A) Cu4-Cu6, B) Cu7-Cu6 and C) Cu4-Cu8. The values are $J = -0.6 \text{ cm}^{-1}$, +0.9 cm⁻¹ and +0.8 cm⁻¹, respectively. The *syn, syn*-coordination mode ($J_{Cu4-Cu6}$) results in a weak antiferromagnetic exchange interaction and the *syn*, anti-coordination mode ($J_{Cu6-Cu7}$ and $J_{Cu4-Cu8}$) results in a weak ferromagnetic exchange interaction. The associated spin density plots are shown in the bottom half of the figure, with an isodensity surface value 0.001 e bohr⁻³. The small spin densities evident on the N, O-atoms of the nitrate are indicative of weak magnetic exchange.