Materials and Methods

1. Materials.

Cerium dioxide (CeO₂), Iron(III) chloride (FeCl₃), Lithium hydride (LiH), Titanium Dioxide (TiO₂), Magnesium oxide (MgO) and Ruthenium(III) Chloride Hydrate (RuCl₃ \cdot nH₂O) were purchased from Aladdin. Anhydrous ethanol (AR grade) and Concentrated sulfuric acid (H₂SO₄) were purchased from Sinopharm Chemical Reagent Co, Ltd. All chemicals in the experiments were used without further purification. The purities of H₂, N₂ and Ar are all 99.995%.

2. Catalyst preparation

Ru-CeO₂/Li: The commercial CeO₂ was pre-calcined at 723 K under vacuum for 3 hours to remove the adsorbed impurities. First, 0.0513 g of RuCl₃·nH₂O ferric chloride (7 wt%) was dissolved in 40 mL of anhydrous ethanol, then 0.5 g of vacuum treated commercial CeO₂ was added. After dispersion by ultrasonic, the solution was impregnated and stirred for 5 h in nitrogen atmosphere. The Ru-Ce precursor was obtained by means of rotation evaporation at 313 K and overnight vacuum drying named Ru-CeO₂.

Take a certain amount of LiH and Ru-CeO₂ in the molar ratio of 6:1, grond and mixed them evenly. The mixture was put into a sealable reactor, heated up to 673K at 3.3 K/min in vacuum, and calcined for 2 h. After cooling down to room temperature, the obtained atropurpureus powders were washed with deionized water 6-8 times to completely remove unreacted LiH, then dried in vacuum. The catalyst named Ru-CeO₂/Li. The BET surface area of the as-synthesized Ru-CeO₂/Li was measured to be 5.89 m²g⁻¹.The other catalysts with different Ru loaded were named Ru(1%)-CeO₂/Li, Ru(3%)-CeO₂/Li, Ru(5%)-CeO₂/Li, Ru(9%)-CeO₂/Li respectively.

CeO₂/Li: Take a certain amount of LiH and CeO₂ in the molar ratio of 6:1, grond and mixed them evenly. The mixture was put into a sealable reactor, heated up to 673K at 3.3 K/min in vacuum, and calcined for 2 h. After cooling down to room temperature,

the obtained yellowish-green powders were washed with deionized water 6-8 times to completely remove unreacted LiH, then dried in vacuum. The BET surface area of the as-synthesized CeO₂/Li was measured to be 15.97 m²g⁻¹.

Ru-TiO₂/Li or Ru-MgO: The commercial TiO₂ (MgO) was pre-calcined at 723 K under vacuum for 3 hours to remove the adsorbed impurities. The R-@TiO₂/Li or Ru-MgO was obtained by the similar preparation method to Ru-CeO₂/Li.

3. Characterization

The powder X-ray diffraction (XRD) patterns were performed on a Bruker D8 Advance Davinci X-ray diffractometer with monochromator Cu Ka radiation $(\lambda = 1.5418 \text{ Å})$ from 10° to 80°. Transmission electron microscopy (TEM) images were measured using a Tecnai G2 S-Twin F20 at the acceleration voltage of 200 kV. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis were collected using a Helios NanoLab 600I from FEI Company. X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo ESCALAB 250 X-ray photoelectron spectrometer with a monochromated X-ray source (Al Ka hv=1486.6 eV). The energy scale of the spectrometer was calibrated using $Au4f_{7/2}$, $Cu2p_{3/2}$, and Ag3d_{5/2} peak positions. The standard deviation for the binding energy (BE) values was 0.1 eV. Argon ion etch for one minute. The electron paramagnetic resonance spectra (EPR) were obtained on a JES-FA 200 EPR spectrometer. The details of the instrumental parameters were as follows: scanning frequency: 9.45 GHz; scanning width: 800 mT; scanning power: 0.998 mW; scanning temperature: 293 K. Fourier transform infrared (FTIR) spectroscopy was performed on a Bruker VERTEX 80 V spectrometer. The Brunauer-Emmett-Teller (BET) surface areas of the samples were measured from the adsorption of N2 at 77 K by using a Micromeritics ASAP 2020M system. Raman spectra of samples was analyzed on a Renishaw inVia Confocal Raman spectrometer equipped with a solid-state laser of 532 nm as the excitation source. Inductively coupled plasma (ICP) analyses were carried out on an iCAP 7600

ICP-OES instrument. The temperature programmed desorption (TPD) and temperature-programmed reduction (TPR) were performed on an Autochem II 2920 apparatus (Micromeritics, USA). Quantitative samples were usually loaded and pretreated in an inert gas flow at 400 °C for 1 h. After cooling to 50 °C, the samples were saturated with a flow of 25 mL min⁻¹ 10% N₂/He, 10% H₂/Ar for 60 min. After being purged with inert gas for 1 h, the samples were heated from 50 °C to 400 °C with a heating rate of 10 °C/min under inert gas atmosphere, and the desorbed N₂, H₂ was determined using a thermal conductivity detector. Ammonia production efficiency was measured by the WFSM-3060 catalyst evaluation device form Tianjin Xianquan Industry and Trade Development Ltd. Ammonia concentration was measured by ion chromatography (IC) on a PIC-10 produced by Qingdao Puren Instrument Ltd.

4. Catalytic Measurements

The catalytic reactions were conducted in a fixed-bed flow system with a gas flow of H₂:N₂ (3:1) at a flow rate of 60 ml min⁻¹. Specifically, a mixture of 15 mg of Ru-CeO₂/Li and 500 mg of quartz sand (140 mesh) was loaded into the reactor in the glove box and then pre-treated in a stream of H₂:N₂ (3:1) at 1.0 MPa under a temperature program of 5 K/min up to 673 K and then holding at 673 K for 1 h. After the system is stable, the reaction was monitored under steady-state conditions of temperature (523-773 K) with a flow rate of 60 ml min⁻¹ under 1.0 MPa. The produced ammonia was trapped in 0.25 mM sulphuric acid solution and the amount of NH₄⁺ generated in the solution was determined using an ion chromatograph.

5. Kinetic measurements

All the kinetic measurements were carried out in the fixed-bed flow system with a flow of mixed gas (N_2 , H_2) under conditions far from equilibrium and the reaction temperature was fixed at 673K,. According to Arrhenius formula:

$$\ln r = \ln k + \alpha \ln P_{\rm NH3} + \beta \ln P_{\rm N2} + \gamma \ln P_{\rm H2}.$$

In the measurement of N_2 reaction order, the partial pressure of H_2 in the reaction gas was kept constant to test the rate of ammonia synthesis under different partial pressure of N_2 . Since the partial pressure of NH_3 in the reaction product is very small, the αlnP_{NH3} term can be ignored, so the above equation can be further transformed into:

$$\ln r = K_1 + \beta \ln P_{N2}$$
.

Meanwhile, the reaction order of H2 can be measured by

$$\ln r = K_2 + \gamma \ln P_{H2}$$
.

Samples	Ce:Li (mole:mole)	Ru (wt%)	
Ru-CeO ₂ /Li	0.8	6.6	
CeO ₂ /Li	0.9	/	
Ru-CeO ₂	/	6.1	
Ru-MgO	/	6.3	

Table S1. Composition of different catalysts (based on ICP measurements)

Table S2. Representative works on ammonia synthesis based on Ru-modified catalysts.

Samples	Rate	Reaction	sccm	Ref.
	$(\mu mol g^{-1} h^{-1})$	conditions	(ml min ⁻¹)	
Ru-CeO ₂ /LiH	33000	1MPa, 400 °C	60	This work
Ru/CeO ₂ -w	22620	1MPa, 400 °C	60	S1
Ru(5%)-Pr ₂ O ₃	19000	1MPa, 400 °C	60	S2
Ru(5%)/CeO ₂	7200	0.9MPa, 400°C	60	S2
Ru(1.8%)/LaScSi	1800	1MPa, 400 °C	60	S2
Ru(9.1%)-Ba/AC	8285	1MPa, 400 °C	60	S3
Ru(6%)-Cs/MgO	12117	1MPa, 400 °C	60	S 3
Ru(4%)/C12A7:e-	6089	1MPa, 400 °C	60	S3
Ba-Ru(4.8%)-Li/AC	19600	1MPa, 400 °C	60	S4
Ru(1%)/CeO ₂ -BH	5454	1MPa, 400 °C	60	S5
Ru(3%)/Ti _{0.18} -Ce	18912	0.9MPa, 400°C	60	S5
Ru(7.8%)/Y ₅ Si ₃	4100	1MPa, 400 °C	60	S6
Ru(3%)/CeO ₂	22075	1MPa, 400 °C	60	S7
Ru(5%) NPs/CeO ₂	28000	1MPa, 400 °C	60	S 8
Ru(1.8%)/Ca2N:e-	3386	0.1MPa, 340 °C	60	S9
Ru(2.0%)/CaH2	4002	0.1MPa, 340 °C	60	S10

Figure S1. HRTEM images of Ru-CeO₂/Li.

Figure S2. SEM-EDX elemental mapping profiles of Ru-CeO₂/Li for oxygen, cerium and ruthenium.

Figure S3. Schematic diagram of the catalytic system.

Figure S4. The calibration curve of NH_4^+ using the ion chromatograph method.

Figure S5. TEM images of (a) Ru-MgO and (b) Ru-TiO₂/Li.

Figure S6. Ammonia synthesis rate as a function of temperature.

Figure S7. XPS spectra of Ce 3d for Ru-CeO₂ and Ru-CeO₂/Li before and after the reactions.

References:

- 1. C. Li, M. Li, Y. Zheng, B. Fang, J. Lin, J. Ni, B. Lin, L. Jiang, Appl. Catal. B. 2023, 320, 121982.
- 2. K. Sato, K. Imamura, Y. Kawano, S. Miyahara, T. Yamamoto, S. Matsumura, K. Nagaoka, Chem. Sci. 2017, 8, 674-679.
- 3. M, Kitano, Y, Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. Kim, M. Hara, H. Hosono. Nat. Chem. 2023, 4, 934-940.
- J. Zheng, F. Liao, S. Wu, Glenn Jones, T. Chen, J. Fellowes, T. Sudmeier, I. McPherson, I. Wilkinson, S. Tsang. Angew. Chem. Int. Ed. 2019, 58, 17335-17341.
- 5. C. Li, Y. Shi, Z. Zhang, J. Ni, X. Wang, J. Lin, B. Lin, L. Jiang. J. Energy Chem. 2021, 60, 403-409.
- Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, H. Hosono. J. Am. Chem. Soc. 2016, 138, 12, 3970–3973.
- B. Lin, Y. Wu, B. Fang, C. Li, J. Ni, X. Wang, J. Lin, L. Jiang. Chin. J. Catal. 2021, 42, 10, 1712–1723.
- J. Feng, L. Liu, X. Ju, M. Wang, X. Zhang, J. Wang, P. Chen. ACS Sustain. Chem. Eng. 2022 10, 31, 10181-10191.
- 9. M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama, M. Hara, H. Hosono. Chem. Sci. 2016, 7, 7, 4036-4043.
- 10. M. Hattori, T. Mori, T. Arai, Y. Inoue, M. Sasase, T. Tada, M. Kitano, T. Yokoyama, M. Hara, H. Hosono. ACS. Catal. 2018, 8, 12, 10977-10984.