Supplementary Information

DppfCuBH₄: new reducing agents for the synthesis of ferrocene-

functionalized metal nanoclusters

Meng Wang,^{ab+}, Simin Li,^{a+} Huijun Chen,^{c+} Xueli Sun,^a Jing Sun,^a Yanyuan Jia,^{b*} Shuo Guo^b, Cunfa Sun^{d*} and Hui Shen^{a*}

^a College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China. Email: shen@imu.edu.cn.

^b China College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China. Email: jiayanyuan@imu.edu.cn.

^c College of Food Science and Pharmaceutical Engineering, Wuzhou University, Guangxi, 543000, China.

^d College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China. Email: Cunfa.SUN@hqu.edu.cn

⁺ *These authors contribute equally to this work.*

Figure S1.³¹P NMR track in the synthesis of dppfCuBH₄.

Figure S2. ¹H NMR spectrum of dppfCuBH₄ (CDCl₃).

Figure S3. ¹³C NMR spectrum of dppfCuBH₄ (CDCl₃).

Figure S4. Digital photographs of single crystals of 1 (a) and 2 (b) clusters.

Figure S5. The comparison of mass spectra of cluster **1** prepared from NaBH₄ and NaBD₄. The same peak position reveals that no hydride atoms are present in **1**.

Figure S6. The thermal ellipsoids of the ORTEP diagram of 1.

Figure S7. The I/sigma vs. resolution plot of 2. Note: during single crystal X-ray diffraction of 2 (CCDC 2250407), serious radiation damage was observed for the crystal when being exposed for a long time. This thus makes it rather difficult to satisfy the data requirement of I/sigma>3 for all conditions, namely, 2theta $\leq 130^{\circ}$ (Resolution ≥ 0.84 Å). To satisfy the requirement of completeness and enhance the quality of the diffraction images, we thus attempt to limit the exposure dose. Although I/sigma is less than 3 for the scope of 2theta>55°, the resultant structure does not influence the discussion and conclusion of this work.

Figure S8. The R_{merge} vs. resolution plot of 2.

Figure S9. The thermal ellipsoids of the ORTEP diagram of 2.

Figure S10. The packing structure of **1** in the unit cell. Color codes for atoms: green spheres, Ag; red spheres, Cu; yellow spheres, Fe; pink spheres, P; turquoise spheres, Cl; pale blue spheres, F; grey spheres, C; lavender spheres, Sb. All hydrogen atoms are omitted for clarity.

Figure S11. The packing structure of **2** in the unit cell. Color codes for atoms: green spheres, Ag; yellow spheres, Fe; pink spheres, P; turquoise spheres, Cl; pale blue spheres, F; grey spheres, C; lavender spheres, Sb. All hydrogen atoms are omitted for clarity.

Figure S12. The packing structure of 2 along *a*-axis

Figure S13. The packing structure of 2 along *b*-axis

Figure S14. The packing structure of 2 along *c*-axis

Figure S15. UV-Vis spectra of 1 and 2 in dichloromethane.

Figure S16. Proton-decoupled ³¹P NMR of 1 in CDCl₃.

Figure S17. ¹H NMR of 1 cluster in CDCl₃.

Figure S18. Proton-decoupled ³¹P NMR of 2 in CDCl₃.

Figure S19. ¹H NMR of 2 in CDCl₃.

Identification code	1
Formula	$C_{300}H_{216}Ag_{25.08}Cl_6Cu_{3.92}F_{24}Fe_6P_{12}Sb_2$
Formula weight	8393.89
Temperature/K	100.15
Crystal system	Monoclinic
Space group	Сс
a (Å)	22.0344(2)
b (Å)	37.8184(3)
c (Å)	40.5275(4)
α (°)	90
β (°)	98.0040(10)
γ (°)	90
V (Å ³)	33442.8(5)
Z	4
$D_c / (g \text{ cm}^{-3})$	1.667
Radiation	Cu Kα (λ=1.54184 Å)
Theta (°) range	4.674 to 127.996
Index ranges	$-25 \le h \le 25, -44 \le k \le 43, -40 \le l \le 47$
Refls. Total	184596
Restraints	44057
Parameters	2883
$\boldsymbol{R}_{\mathrm{int}}$	0.1084
$\boldsymbol{R}_{l}/\boldsymbol{w}\boldsymbol{R}_{2}$ [I>2 σ (I)]	0.0939/0.2349
R_1/wR_2 (all data)	0.1064/0.2474
GooF	1.110

 Table S1. Crystallographic data of 1.

Identification code	2
Formula	$C_{170}H_{140}Ag_4Cl_2F_{12}Fe_5P_{10}Sb_2$
Formula weight	4079.18
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a (Å)	15.428(2)
b (Å)	15.617(2)
c (Å)	20.1332(17)
α(°)	68.798(11)
β (°)	81.147(9)
γ (°)	89.787(11)
V (Å ³)	4461.5(10)
Z	1
$D_c / (g \text{ cm}^{-3})$	1.518
Radiation	Cu Kα (λ=1.54184 Å)
Theta (°) range	6.888 to 125
Index ranges	$-12 \leqslant h \leqslant 17, -17 \leqslant k \leqslant 17, -23 \leqslant l \leqslant 23$
Refls. Total	25864
Restraints	935
Parameters	1041
$oldsymbol{R}_{ m int}$	0.1580
$R_1/wR_2[I>2\sigma(I)]$	0.0984/0.2123
R_{I}/wR_{2} (all data)	0.2354/0.2849
GooF	0.836

Table S2. Crystallographic data of **2**.

Parameter	value	Parameter	value
Ag1-Ag3	2.938 (3)	Ag2-C200	2.62 (3)
Ag1-Ag4	2.963 (3)	Ag2-C206	2.27 (3)
Ag1-Ag5	2.944 (3)	Ag3-Ag4	3.192 (3)
Ag1-Ag7	2.962 (3)	Ag3-Ag5	3.180 (3)
Ag1-Ag8	2.958 (3)	Ag3-Ag8	2.830 (3)
Ag1-Ag9	2.954 (3)	Ag3-Ag9	2.847 (3)
Ag1-Ag10	2.971 (3)	Ag3-Cu3	2.925 (3)
Ag1-Ag12	2.951 (3)	Ag3-Cl13	2.735 (7)
Ag1-Ag13	2.958 (3)	Ag3-Cl180	2.45 (3)
Ag1-Ag18	2.953 (3)	Ag3-Cl213	2.70 (3)
Ag1-Ag20	2.953 (3)	Ag4-Ag5	3.195 (3)
Ag1-Ag22	2.959 (3)	Ag4-Ag7	2.866 (3)
Ag2-Cu1	2.735 (5)	Ag4-Ag20	2.850 (3)
Ag2-Cl15	2.639 (6)	Ag4-Cu3	2.910 (5)
Ag2-P1	2.372 (7)	Ag4-Cl15	2.774 (6)
Ag4-C187	2.48 (3)	Ag7-Cu1	2.867 (4)
Ag4-C275	2.7 (3)	Ag7-Cl1	2.754 (7)
Ag5-Ag12	2.852 (3)	Ag7-C82	2.61 (3)
Ag5-Ag18	2.854 (3)	Ag7-C206	2.38 (3)
Ag5-Cu3	2.903 (5)	Ag8-Ag9	2.843 (3)
Ag5-Cl13	2.605 (7)	Ag8-Ag13	3.184 (3)
Ag6-P2	2.386 (7)	Ag8-Ag18	3.212 (3)
Ag6-C282	2.28 (3)	Ag8-Cu2	2.863 (5)
Ag7-Ag10	3.204 (3)	Ag8-Cl14	2.775 (7)
Ag7-Ag12	3.183 (3)	Ag8-C199	2.48 (2)
Ag7-Ag20	2.846 (3)	Ag9-Ag20	3.193 (3)
Ag9-Ag22	3.181 (3)	Ag9-Cu4	2.873 (4)
Ag9-Cl12	2.757 (7)	Ag12-C200	2.34 (3)

 Table S3. Selected bond lengths (Å) for compound 1.

Ag9-C207	2.59 (3)	Ag13-Ag18	3.188 (3)
Ag-C282	2.38 (3)	Ag13-Ag22	2.851 (3)
Ag10-Ag12	3.206 (3)	Ag13-Cu2	2.907 (5)
Ag10-Ag13	2.855 (3)	Ag13-Cl12	2.750 (6)
Ag10-Ag22	2.846 (3)	Ag13-Ag22	2.851 (3)
Ag10-Cu1	2.893 (4)	Ag13-Cu2	2.907 (5)
Ag10-Cl16	2.729 (7)	Ag13-Cl12	2.750 (6)
Ag10-C179	2.62 (3)	Ag13-C165	2.63 (3)
Ag10-C281	2.34 (3)	Ag13-C283	2.32 (3)
Ag11-Cu3	2.741 (4)	Ag14-Cu3	2.745 (3)
Ag11-Cl15	2.603 (7)	Ag14-P5	2.387 (3)
Ag11-P4	2.413 (9)	Ag14-C180	2.69 (3)
Ag11-C187	2.64 (3)	Ag14-C187	2.22 (3)
Ag11-C297	2.31 (3)	Ag15-Cu1	2.732 (4)
Ag12-Ag18	2.853 (3)	Ag15-Cl16	2.616 (7)
Ag12-Cu1	2.866 (5)	Ag15-P7	2.346 (9)
Ag12-Cl15	2.761 (7)	Ag15-C200	2.33 (3)
Ag12-C142	2.68 (3)	Ag15-C281	2.50 (3)
Ag16-Cu2	2.728 (5)	Ag19-C206	2.63 (3)
Ag16-Cl14	2.618 (7)	Ag19-C281	2.40 (3)
Ag16-P6	2.344 (8)	Ag20-Ag22	3.186 (3)
Ag16-C149	2.23 (3)	Ag20-Cu4	2.866 (5)
Ag17-Cu2	2.731 (3)	Ag20-Cl13	2.787 (7)
Ag17-Cl12	2.634 (3)	Ag20-C172	2.35 (3)
Ag17-P8	2.395 (3)	Ag20-C276	2.69 (3)
Ag17-C199	2.21 (3)	Ag21-Cu2	2.754 (5)
Ag17-C283	2.59 (3)	Ag21-Cl16	2.670 (7)
Ag18-Cu2	2.885 (4)	Ag21-P3	2.358 (8)
Ag18-Cl16	2.733 (8)	Ag21-C149	2.61 (3)
Ag18-C149	2.43 (2)	Ag21-C283	2.32 (3)

Ag18-C283	2.59 (3)	Ag22-Cu4	2.873 (5)
Ag19-Cu1	2.783 (4)	Ag22-Cl1	2.777 (6)
Ag19-Cl1	2.688 (7)	Ag22-C268	2.42 (4)
Ag19-P10	2.383 (8)	Ag22-C280	2.68 (4)
Ag23-Cu4	2.73 (5)	Fe1-C7	2.09 (3)
Ag23-Cl1	2.777 (6)	Fe1-C44	2.08 (3)
Ag23-P11	2.381 (9)	Fe1-C63	1.95 (3)
Ag23-C172	2.25 (3)	Fe1-C112	2.02 (3)
Ag23-C268	2.37 (3)	Fe1-C113	2.01 (3)
Ag24-Cu3	2.719 (3)	Fe1-C114	2.09 (2)
Ag24-Cl14	2.601 (3)	Fe1-C115	2.12 (2)
Ag24-P9	2.393 (3)	Fe1-C116	2.06 (2)
Ag24-C180	2.26 (3)	Fe1-C117	1.99 (2)
Ag24-C279	2.55 (3)	Fe1-C118	2.06 (3)
Ag25-Cu4	2.818 (5)	Fe2-C160	2.06 (2)
Ag25-Cl12	2.673 (7)	Fe2-C161	2.01 (2)
Ag25-P12	2.354 (9)	Fe2-C162	2.01 (2)
Ag25-C268	2.37 (3)	Fe2-C163	2.05 (2)
Ag25-C282	2.68 (4)	Fe2-C164	2.08 (2)
Cu1-C200	2.08 (3)	Fe2-C208	1.94 (2)
Cu1-C206	1.95 (2)	Fe2-C209	1.99 (2)
Cu1-C281	1.98 (3)	Fe2-C210	2.08 (2)
Cu2-C149	1.99 (3)	Fe2-C211	2.09 (2)
Cu2-C199	2.09 (3)	Fe2-C212	2.00 (2)
Cu2-C283	2.02 (3)	Fe3-C137	2.08 (2)
Cu3-C180	2.13 (3)	Fe3-C138	2.08 (2)
Cu3-C187	1.95 (3)	Fe3-C139	2.03 (2)
Cu3-C279	1.97 (3)	Fe3-C140	2.00 (2)
Cu4-C172	2.05 (4)	Fe3-C141	2.03 (2)
Cu4-C268	2.09 (4)	Fe3-C155	2.07 (2)

Cu4-C282	2.02 (3)	Fe3-C156	2.10 (2)
Fe4-C201	2.05 (3)	Fe3-C157	2.10 (2)
Fe6-C191	2.00 (2)	Fe3-C158	2.08 (2)
Fe4-C202	2.08 (2)	Fe3-C159	2.06 (2)
Fe4-C203	2.08 (3)	Fe5-C150	2.08 (3)
Fe4-C204	2.05 (3)	Fe5-C151	2.05 (2)
Fe4-C205	2.03 (3)	Fe5-C152	2.03 (2)
Fe4-C284	2.08 (2)	Fe5-C153	2.05 (3)
Fe4-C285	2.06 (3)	Fe5-C154	2.08 (3)
Fe4-C286	1.99 (3)	Fe6-C132	2.04 (3)
Fe4-C287	1.96 (3)	Fe6-C133	1.91 (3)
Fe4-C288	2.02 (3)	Fe6-C134	2.00 (3)
Fe5-C107	2.09 (3)	Fe6-C135	2.18 (3)
Fe5-C108	2.05 (3)	Fe6-C136	2.20 (3)
Fe5-C109	2.03 (2)	Fe6-C188	2.08 (3)
Fe5-C110	2.06 (3)	Fe6-C189	2.06 (3)
Fe5-C111	2.09 (2)	Fe6-C190	2.00 (2)
		Fe6-C192	2.05 (2)

Parameter	value	Parameter	value
Ag1-Cl1	2.650(4)	Ag2-P6	2.447(14)
Ag1-P1	2.400(5)	Fe1-C2	1.977(15)
Ag1-P3	2.374(4)	Fe1-C10	1.972(12)
Ag1-P4	2.483(4)	Fe1-C24	2.014(16)
Ag2-Cl1	2.507(4)	Fe1-C26	2.034(14)
Ag2-P2	2.417(5)	Fe1-C33	2.059(15)
Ag2-P5	2.468(13)	Fe1-C36	1.995(17)
Fe1-C37	1.982(18)	Fe1-C38	2.052(13)
Fe1-C64	1.999(15)	Fe1-C66	2.008(19)
Fe2-C21	2.046(14)	Fe2-C32	2.095(16)
Fe2-C32	2.095(16)	Fe2-C49	2.064(18)
Fe2-C49	2.064(18)	Fe2-C54	2.036(19)
Fe2-C54	2.036(19)	Fe2-C58	2.070(17)
Fe2-C58	2.070(17)	Fe3-C42	2.043(10)
Fe3-C41	2.026(11)	Fe3-C43	2.062(10)
Fe3-C44	2.057(10)	Fe3-C69	2.073(13)
Fe3-C45	2.035(9)	Fe3-C70	2.051(12)
Fe3-C68	2.055(12)	Fe3-C71	2.019(13)
Fe3-C72	2.021(12)		

 Table S4. Selected bond lengths (Å) for compound 2.