Supporting Information

Two novel Ln₈ clusters bridged by CO₃^{2–} and effectively converting CO₂ into oxazolidinones and cyclic carbonates Na Qiao, ^a Xiao-Yan Xin,^a Wen-Min Wang,^{*a,c} Zhi-Lei Wu ^{*b,c}, Jian-Zhong Cui^c

Experimental Section

Materials and methods

Triethanolamine was obtained from Sigma-Aldrich Co. Ltd., lanthanide salts $(Nd(NO_3)_3 \cdot 6H_2O, Sm(NO_3)_3 \cdot 6H_2O)$ were obtained from Energy Chemical Co. Ltd., Aladdin Co. Ltd., acetonitrile and triethylamine were commercially purchased from Sigma-Aldrich Co. Ltd.. All chemical reagents and solvents used in synthetic studies were obtained from commercial sources, of reagent grade, and employed without further purification.

Physical measurements

Elemental analyses data (C, H, and N) were obtained on a PerkinElmer 2400 analyzer. The FT–IR spectra data were recorded via a PerkinElmer FT-IR spectrophotometer using KBr pellets from 4000 to 400 cm⁻¹. PXRD were performed on a Rigaku Ultima IV instrument at room temperature with the scan speed of 10° min⁻¹ and the scan range of 2θ from 5–50° through Cu K α radiation ($\lambda = 1.54056$ Å). TGA analyses data were collected on Perkin-Elmer TGA 4000 analyzer with the heating rate 10 °C / min form 30 to 800 °C under air atmosphere. UV–vis spectra were measured on JASCOV-570 spectrophotometer at room temperature. ¹H NMR spectra were collected on a Bruker spectrometer in CDCl₃ at 400 MHZ. The XPS data was collected on a Kratos Axis Ultra DLD multi-technique X-ray spectrometer. (ICP) tests were carried out by an ICP-9000(N+M). High resolution mass spectrum was performed on a Thermo Fisher Trace 1300 +ISQ LT instrument.

^aCollege of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.

^bCollege of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.

^c Department of Chemistry, Tianjin University, Tianjin, 300072, China.

^{*}Corresponding Authors E-mails: wangwenmin0506@126.com. <u>wuzhilei03@163.com</u>

Catalytic Experiment of CO₂ with aziridines.

In a typical experiment, cluster **1** (30 mg) was ground and put into a 10 mL autoclave equipped with a magnetic stir bar. Then 1-ethyl-2-phenylaziridine (294.4 mg, 2.0 mmol) and tetrabutylammonium bromide (TBAB) (32.2 mg, 0.1 mmol) were also added into the reaction tube. Then the autoclave was capped under 1 MPa CO₂ and stirred at 70 °C for 10 h. Afterwards, the mixture was dissolved in CH₂Cl₂. The yield of corresponding oxazolidinones were determined by ¹H NMR and 1,3,5-trimethoxybenzene is used as internal standard. To explore the recycling performance, the catalyst of cluster was collected centrifugally after each reaction, washed with methanol and dried completely for the next cycle.

Catalytic Experiment of CO₂ with styrene oxide.

CO₂, 25 mg cluster, 2 mmol styrene oxide and 3mol % mol TBAB were added into Schlenk tube and stirred at 80 °C for 12 h. Then 2 mL dichloromethane was added to reactor and the mixture was purified by column chromatography. By 1,3,5trimethoxybenzene using as internal standard, the yield was calculated by ¹H NMR spectroscopy. To explore the recycling performance, the catalyst of cluster was collected centrifugally after each reaction, washed with methanol and dried completely for the next cycle.

Synthesis of aziridines

At first, liquid bromine (0.2 mol) is added to dried dichloromethane (40 mL). At 0 °C, the mixture above was dropwise added to a mixture which consists of 0.2 mol dimethyl sulfide and 40 mL dichloromethane. Orange solid A was obtained after reacting for 12 h. Then A is washed with ethyl ether. Afterwards, 160 mmol styrene was dropwise added into a round-bottom flask containing160 mL acetonitrile and 160 mmol A at 0 °C. White solid B was obtained after reacting for 12 h and washing with acetonitrile and drying. At last, different amines (20-50 mmol) were added to the aqueous solution containing 10 mmol B. After reacting for 12 h at room temperature, 20 mL saturated NaCl solution was added and extracted with diethyl ether (3×20 mL)

three times. The organic phase was dried by anhydrous $MgSO_4$ overnight. The substrates were obtained by rotary evaporation.

Scheme S1 Synthesis of aziridines.

Table S1 Selected bond lengths (Å) and angles (°) for cluster 1^a

Bond lengths			
Nd(3)-O(7)	2.355(5)	Nd(3)-O(23)#1	2.572(5)
Nd(3)-O(20)	2.554(6)	Nd(3)-O(4)	2.454(5)
Nd(3)-O(9)	2.381(5)	Nd(3)-O(19)	2.552(5)
Nd(3)-O(8)	2.559(5)	Nd(3)-O(12)	2.537(5)
Nd(3)-N(3)	2.676(6)	Nd(3)-N(7)	2.987(7)
Nd(2)-O(7)	2.320(5)	Nd(2)-O(23)#1	2.916(5)
Nd(2)-O(16)	2.576(6)	Nd(2)-O(4)	2.572(5)
Nd(2)-O(3)	2.303(6)	Nd(2)-O(6)	2.534(6)
Nd(2)-O(24)#1	2.543(5)	Nd(2)-N(2)	2.716(7)
Nd(2)-O(17)	2.966(8)	Nd(2)-O(5)	2.516(6)
Nd(4)-O(23)#1	2.685(5)	Nd(4)-O(22)#1	2.487(5)
Nd(4)-O(22)	2.502(5)	Nd(4)-N(4)	2.653(8)
Nd(4)-O(1)	2.326(5)	Nd(4)-O(9)	2.395(5)
Nd(4)-O(12)	2.470(5)	Nd(4)-O(11)	2.559(5)
Nd(4)-O(10)	2.607(5)	Nd(1)-O(23)#1	2.572(5)
Nd(1)-O(14)	2.572(6)	Nd(1)-O(4)	2.474(5)
Nd(1)-O(3)	2.365(6)	Nd(1)-O(1)	2.354(5)
Nd(1)-O(13)	2.577(5)	Nd(1)-O(2)	2.521(6)
Nd(1)-O(12)	2.552(5)	Nd(1)-N(5)	2.991(7)
Nd(1)-N(1)	2.684(7)		
Bond Angels			
O(7)-Nd(3)-O(23)#1	70.96(16)	O(7)-Nd(3)-O(20)	147.03(19)
O(7)-Nd(3)-O(4)	71.17(17)	O(7)-Nd(3)-O(9)	107.25(18)
O(7)-Nd(3)-O(19)	129.15(18)	O(7)-Nd(3)-O(8)	80.99(19)
O(7)-Nd(3)-O(12)	130.76(17)	O(7)-Nd(3)-N(3)	67.52(19)
O(7)-Nd(3)-N(7)	143.52(18)	O(23)#1-Nd(3)-N(3)	107.02(18)
O(23)#1-Nd(3)-N(7)	139.90(17)	O(20)-Nd(3)-O(23)#1	139.77(17)

O(20)-Nd(3)-O(8) $68.48(19)$ $O(20)-Nd(3)-N(3)$ $87.5(2)$ $O(20)-Nd(3)-N(7)$ $25.09(19)$ $O(4)-Nd(3)-O(23)#1$ $63.50(16)$ $O(4)-Nd(3)-O(20)$ $127.11(18)$ $O(4)-Nd(3)-O(19)$ $78.12(18)$ $O(4)-Nd(3)-O(8)$ $103.96(18)$ $O(4)-Nd(3)-O(12)$ $76.43(16)$ $O(4)-Nd(3)-O(8)$ $103.96(18)$ $O(4)-Nd(3)-O(12)$ $76.43(16)$ $O(4)-Nd(3)-N(3)$ $138.26(18)$ $O(4)-Nd(3)-N(7)$ $102.61(19)$ $O(9)-Nd(3)-O(23)#1$ $70.68(17)$ $O(9)-Nd(3)-O(20)$ $81.10(18)$ $O(9)-Nd(3)-O(4)$ $131.96(17)$ $O(9)-Nd(3)-O(19)$ $123.37(18)$ $O(9)-Nd(3)-O(8)$ $123.57(19)$ $O(9)-Nd(3)-O(12)$ $69.67(17)$ $O(9)-Nd(3)-O(8)$ $68.32(19)$ $O(9)-Nd(3)-N(7)$ $103.05(19)$ $O(19)-Nd(3)-O(23)#1$ $127.78(17)$ $O(19)-Nd(3)-O(20)$ $49.84(19)$ $O(19)-Nd(3)-O(8)$ $68.18(19)$ $O(19)-Nd(3)-N(3)$ $125.11(19)$
O(20)-Nd(3)-N(7)25.09(19)O(4)-Nd(3)-O(23)#163.50(16)O(4)-Nd(3)-O(20)127.11(18)O(4)-Nd(3)-O(19)78.12(18)O(4)-Nd(3)-O(8)103.96(18)O(4)-Nd(3)-O(12)76.43(16)O(4)-Nd(3)-N(3)138.26(18)O(4)-Nd(3)-N(7)102.61(19)O(9)-Nd(3)-O(23)#170.68(17)O(9)-Nd(3)-O(20)81.10(18)O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-O(8)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(4)-Nd(3)-O(20)127.11(18)O(4)-Nd(3)-O(19)78.12(18)O(4)-Nd(3)-O(8)103.96(18)O(4)-Nd(3)-O(12)76.43(16)O(4)-Nd(3)-N(3)138.26(18)O(4)-Nd(3)-N(7)102.61(19)O(9)-Nd(3)-O(23)#170.68(17)O(9)-Nd(3)-O(20)81.10(18)O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(4)-Nd(3)-O(8)103.96(18)O(4)-Nd(3)-O(12)76.43(16)O(4)-Nd(3)-N(3)138.26(18)O(4)-Nd(3)-N(7)102.61(19)O(9)-Nd(3)-O(23)#170.68(17)O(9)-Nd(3)-O(20)81.10(18)O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(4)-Nd(3)-N(3)138.26(18)O(4)-Nd(3)-N(7)102.61(19)O(9)-Nd(3)-O(23)#170.68(17)O(9)-Nd(3)-O(20)81.10(18)O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(9)-Nd(3)-O(23)#170.68(17)O(9)-Nd(3)-O(20)81.10(18)O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(9)-Nd(3)-O(4)131.96(17)O(9)-Nd(3)-O(19)123.37(18)O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(9)-Nd(3)-O(8)123.57(19)O(9)-Nd(3)-O(12)69.67(17)O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(9)-Nd(3)-N(3)68.32(19)O(9)-Nd(3)-N(7)103.05(19)O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(19)-Nd(3)-O(23)#1127.78(17)O(19)-Nd(3)-O(20)49.84(19)O(19)-Nd(3)-O(8)68.18(19)O(19)-Nd(3)-N(3)125.11(19)
O(19)-Nd(3)-O(8) 68.18(19) O(19)-Nd(3)-N(3) 125.11(19)
O(19)-Nd(3)-N(7) 24.76(19) O(8)-Nd(3)-O(23)#1 151.64(17)
O(8)-Nd(3)-N(3) 64.1(2) O(8)-Nd(3)-N(7) 65.35(19)
O(12)-Nd(3)-O(23)#1 61.63(15) O(12)-Nd(3)-O(20) 82.20(18)
O(12)-Nd(3)-O(19) 76.48(17) O(12)-Nd(3)-O(8) 143.54(17)
O(12)-Nd(3)-N(3) 137.79(18) O(12)-Nd(3)-N(7) 78.84(17)
O(7)-Nd(2)-O(23)#1 65.20(16) O(7)-Nd(2)-O(16) 94.7(2)
O(7)-Nd(2)-O(4) 69.60(17) O(7)-Nd(2)-O(6) 74.4(2)
O(7)-Nd(2)-O(24)#1 76.56(19) O(7)-Nd(2)-N(2) 94.8(2)
O(7)-Nd(2)-O(17) 127.70(19) O(7)-Nd(2)-O(5) 149.4(2)
O(23)#1-Nd(2)-O(17) 99.20(18) O(16)-Nd(2)-O(23)#1 114.44(16)
O(16)-Nd(2)-N(2) 119.6(2) O(16)-Nd(2)-O(17) 44.35(19)
O(4)-Nd(2)-O(23)#1 57.24(14) O(4)-Nd(2)-O(16) 164.07(19)
O(4)-Nd(2)-N(2) 66.37(18) O(4)-Nd(2)-O(17) 144.86(18)
O(3)-Nd(2)-O(7) 128.36(19) O(3)-Nd(2)-O(23)#1 66.13(18)
O(3)-Nd(2)-O(16) 120.5(2) O(3)-Nd(2)-O(4) 70.47(19)
O(3)-Nd(2)-O(6) 154.0(2) O(3)-Nd(2)-O(24)#1 83.4(2)
O(3)-Nd(2)-N(2) 97.9(2) O(3)-Nd(2)-O(17) 76.2(2)
O(3)-Nd(2)-O(5) 78.3(2) O(6)-Nd(2)-O(23)#1 139.08(19)
O(6)-Nd(2)-O(16) 61.35(19) O(6)-Nd(2)-O(4) 114.57(18)
O(6)-Nd(2)-O(24)#1 117.5(2) O(6)-Nd(2)-N(2) 64.5(2)
O(6)-Nd(2)-O(17) 100.3(2) O(24)#1-Nd(2)-O(23)#1 47.66(15)
O(24)#1-Nd(2)-O(16) 67.50(18) O(24)#1-Nd(2)-O(4) 104.77(16)
O(24)#1-Nd(2)-N(2) 169.7(2) O(24)#1-Nd(2)-O(17) 59.77(19)
N(2)-Nd(2)-O(23)#1 123.58(18) N(2)-Nd(2)-O(17) 130.5(2)
O(5)-Nd(2)-O(23)#1 144.2(2) O(5)-Nd(2)-O(16) 79.8(2)
O(5)-Nd(2)-O(4) 115.00(19) O(5)-Nd(2)-O(6) 76.7(3)

O(5)-Nd(2)-O(24)#1	126.7(2)	O(5)-Nd(2)-N(2)	63.4(2)	
O(5)-Nd(2)-O(17)	67.3(2)	O(22)#1-Nd(4)-O(23)#1	50.49(15)	
O(22)-Nd(4)-O(23)#1	110.18(15)	O(22)#1-Nd(4)-O(22)	61.26(18)	
O(22)-Nd(4)-N(4)	120.00(19)	O(22)#1-Nd(4)-N(4)	171.9(2)	
O(22)-Nd(4)-O(11)	67.61(17)	O(22)#1-Nd(4)-O(11)	123.07(18)	
O(22)-Nd(4)-O(10)	70.23(17)	O(22)#1-Nd(4)-O(10)	108.01(18)	
N(4)-Nd(4)-O(23)#1	129.70(19)	O(1)-Nd(4)-O(23)#1	69.48(16)	
O(1)-Nd(4)-O(22)#1	87.64(18)	O(1)-Nd(4)-O(22)	96.80(18)	
O(1)-Nd(4)-N(4)	100.0(2)	O(1)-Nd(4)-O(9)	133.42(17)	
O(1)-Nd(4)-O(12)	72.03(18)	O(1)-Nd(4)-O(11)	74.85(19)	
O(1)-Nd(4)-O(10)	149.54(18)	O(9)-Nd(4)-O(23)#1	68.52(16)	
O(9)-Nd(4)-O(22)	115.84(17)	O(9)-Nd(4)-O(22)#1	80.92(17)	
O(9)-Nd(4)-N(4)	91.7(2)	O(9)-Nd(4)-O(12)	70.61(16)	
O(9)-Nd(4)-O(11)	146.8(2)	O(9)-Nd(4)-O(10)	76.00(17)	
O(12)-Nd(4)-O(23)#1	60.85(15)	O(12)-Nd(4)-O(22)#1	111.20(15)	
O(12)-Nd(4)-O(22)	167.34(16)	O(12)-Nd(4)-N(4)	69.0(2)	
O(12)-Nd(4)-O(11)	113.59(17)	O(12)-Nd(4)-O(10)	122.44(17)	
O(11)-Nd(4)-O(23)#1	143.78(18)	O(11)-Nd(4)-N(4)	62.3(2)	
O(11)-Nd(4)-O(10)	74.71(19)	O(10)-Nd(4)-O(23)#1	140.47(17)	
O(10)-Nd(4)-N(4)	66.6(2)	O(23)#1-Nd(1)-O(14)	138.90(18)	
O(23)#1-Nd(1)-O(13)	130.55(17)	O(23)#1-Nd(1)-N(5)	142.08(18)	
O(23)#1-Nd(1)-N(1)	106.7(2)	O(14)-Nd(1)-O(13)	49.74(18)	
O(14)-Nd(1)-N(5)	24.69(19)	O(14)-Nd(1)-N(1)	85.6(2)	
O(4)-Nd(1)-O(23)#1	63.23(15)	O(4)-Nd(1)-O(14)	130.16(17)	
O(4)-Nd(1)-O(13)	81.56(17)	O(4)-Nd(1)-O(2)	103.64(18)	
O(4)-Nd(1)-O(12)	75.77(16)	O(4)-Nd(1)-N(5)	106.43(18)	
O(4)-Nd(1)-N(1)	137.9(2)	O(3)-Nd(1)-O(23)#1	71.63(18)	
O(3)-Nd(1)-O(14)	145.76(19)	O(3)-Nd(1)-O(4)	71.29(19)	
O(3)-Nd(1)-O(13)	130.0(2)	O(3)-Nd(1)-O(2)	79.0(2)	
O(3)-Nd(1)-O(12)	131.03(17)	O(3)-Nd(1)-N(5)	142.9(2)	
O(3)-Nd(1)-N(1)	67.0(2)	O(1)-Nd(1)-O(23)#1	71.14(17)	
O(1)-Nd(1)-O(14)	78.02(19)	O(1)-Nd(1)-O(4)	132.06(17)	
O(1)-Nd(1)-O(3)	108.1(2)	O(1)-Nd(1)-O(13)	121.14(19)	
O(1)-Nd(1)-O(2)	123.67(19)	O(1)-Nd(1)-O(12)	70.11(17)	
O(1)-Nd(1)-N(5)	100.3(2)	O(1)-Nd(1)-N(1)	68.4(2)	
O(13)-Nd(1)-N(5)	25.13(18)	O(13)-Nd(1)-N(1)	122.5(2)	
O(2)-Nd(1)-O(23)#1	150.31(18)	O(2)-Nd(1)-O(14)	70.4(2)	

-

O(2)-Nd(1)-O(13)	67.5(2)	O(2)-Nd(1)-O(12)	144.74(19)
O(2)-Nd(1)-N(5)	65.4(2)	O(2)-Nd(1)-N(1)	63.9(2)
O(12)-Nd(1)-O(23)#1	61.42(15)	O(12)-Nd(1)-O(14)	83.08(18)
O(12)-Nd(1)-O(13)	77.67(17)	O(12)-Nd(1)-N(5)	80.80(18)
O(12)-Nd(1)-N(1)	138.3(2)		

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+2, -z+1

Table S2 Selected bond lengths (Å) and angles (°) for cluster 2^a

Bond lengths			
Sm(2)-O(15)	2.538(6)	Sm(2)-O(5)	2.333(6)
Sm(2)-O(4)	2.370(6)	Sm(2)-O(23)	2.537(6)
Sm(2)-O(10)	2.427(6)	Sm(2)-O(22)	2.524(7)
Sm(2)-O(6)	2.548(6)	Sm(2)-N(2)	2.662(8)
Sm(2)-N(8)	2.956(8)	Sm(2)-O(2)	2.505(6)
Sm(4)-O(15)	2.913(6)	Sm(4)-O(5)	2.294(6)
Sm(4)-O(10)	2.567(6)	Sm(4)-O(11)	2.520(7)
Sm(4)-O(12)	2.490(8)	Sm(4)-O(18)	2.541(7)
Sm(4)-N(4)	2.707(8)	Sm(4)-O(14)	2.526(6)
Sm(4)-O(8)	2.281(7)	Sm(1)-O(15)	2.652(6)
Sm(1)-O(4)	Sm(1)-O(4)	Sm(1)-O(7)	2.307(7)
Sm(1)-O(13)	2.478(6)	Sm(1)-O(13)#1	2.485(6)
Sm(1)-O(3)	2.535(7)	Sm(1)-O(1)	2.569(7)
Sm(1)-O(2)	2.465(6)	Sm(1)-N(1)	2.623(10)
Sm(3)-O(15)	2.537(6)	Sm(3)-O(20)	2.539(7)
Sm(3)-O(10)	2.449(6)	Sm(3)-O(7)	2.330(6)
Sm(3)-O(19)	2.556(6)	Sm(3)-O(9)	2.507(7)
Sm(3)-N(7)	2.970(8)	Sm(3)-N(3)	2.667(9)
Sm(3)-O(2)	2.525(6)	Sm(3)-O(8)	2.355(7)
Bond Angels			
O(15)-Sm(2)-O(6)	151.3(2)	O(15)-Sm(2)-N(2)	107.6(2)
O(15)-Sm(2)-N(8)	140.2(2)	O(5)-Sm(2)-O(15)	71.2(2)
O(5)-Sm(2)-O(4)	107.5(2)	O(5)-Sm(2)-O(23)	129.1(2)
O(5)-Sm(2)-O(10)	71.8(2)	O(5)-Sm(2)-O(22)	146.3(2)
O(5)-Sm(2)-O(6)	80.5(2)	O(5)-Sm(2)-N(2)	67.8(2)
O(5)-Sm(2)-N(8)	143.3(2)	O(5)-Sm(2)-O(2)	131.1(2)
O(4)-Sm(2)-O(15)	70.9(2)	O(4)-Sm(2)-O(23)	123.1(2)
O(4)-Sm(2)-O(10)	132.7(2)	O(4)-Sm(2)-O(22)	80.3(2)

O(4)-Sm(2)-O(6)	124.3(2)	O(4)-Sm(2)-N(2)	68.5(2)
O(4)-Sm(2)-N(8)	102.6(2)	O(4)-Sm(2)-O(2)	70.1(2)
O(23)-Sm(2)-O(15)	128.0(2)	O(23)-Sm(2)-O(6)	67.7(2)
O(23)-Sm(2)-N(2)	124.3(2)	O(23)-Sm(2)-N(8)	25.0(2)
O(10)-Sm(2)-O(15)	64.21(19)	O(10)-Sm(2)-O(23)	77.5(2)
O(10)-Sm(2)-O(22)	127.2(2)	O(10)-Sm(2)-O(6)	102.6(2)
O(10)-Sm(2)-N(2)	139.0(2)	O(10)-Sm(2)-N(8)	102.3(2)
O(10)-Sm(2)-O(2)	76.17(19)	O(22)-Sm(2)-O(15)	139.9(2)
O(22)-Sm(2)-O(23)	50.5(2)	O(22)-Sm(2)-O(6)	68.8(2)
O(22)-Sm(2)-N(2)	86.1(2)	O(22)-Sm(2)-N(8)	25.5(2)
O(6)-Sm(2)-N(2)	64.4(2)	O(6)-Sm(2)-N(8)	65.2(2)
N(2)-Sm(2)-N(8)	105.7(3)	O(2)-Sm(2)-O(15)	61.86(18)
O(2)-Sm(2)-O(23)	76.2(2)	O(2)-Sm(2)-O(22)	82.6(2)
O(2)-Sm(2)-O(6)	143.1(2)	O(2)-Sm(2)-N(2)	138.3(2)
O(2)-Sm(2)-N(8)	78.8(2)	O(5)-Sm(4)-O(15)	64.84(19)
O(5)-Sm(4)-O(10)	69.9(2)	O(5)-Sm(4)-O(11)	75.1(2)
O(5)-Sm(4)-O(12)	150.3(3)	O(5)-Sm(4)-O(18)	95.2(3)
O(5)-Sm(4)-N(4)	95.8(3)	O(5)-Sm(4)-O(14)	76.8(2)
O(10)-Sm(4)-O(15)	57.20(16)	O(10)-Sm(4)-N(4)	67.1(2)
O(11)-Sm(4)-O(15)	139.3(2)	O(11)-Sm(4)-O(10)	115.6(2)
O(11)-Sm(4)-O(18)	61.3(2)	O(11)-Sm(4)-N(4)	65.0(3)
O(11)-Sm(4)-O(14)	117.5(2)	O(12)-Sm(4)-O(15)	144.2(3)
O(12)-Sm(4)-O(10)	116.3(2)	O(12)-Sm(4)-O(11)	76.5(3)
O(12)-Sm(4)-O(18)	78.4(3)	O(12)-Sm(4)-N(4)	64.1(3)
O(12)-Sm(4)-O(14)	124.8(3)	O(18)-Sm(4)-O(15)	114.1(2)
O(18)-Sm(4)-O(10)	164.7(2)	O(18)-Sm(4)-N(4)	119.7(2)
N(4)-Sm(4)-O(15)	124.2(2)	O(14)-Sm(4)-O(15)	47.57(18)
O(14)-Sm(4)-O(10)	104.70(18)	O(14)-Sm(4)-O(18)	67.2(2)
O(14)-Sm(4)-N(4)	170.7(2)	O(8)-Sm(4)-O(15)	65.9(2)
O(8)-Sm(4)-O(5)	128.2(2)	O(8)-Sm(4)-O(10)	71.0(2)
O(8)-Sm(4)-O(11)	154.5(3)	O(8)-Sm(4)-O(12)	78.6(3)
O(8)-Sm(4)-O(18)	118.7(3)	O(8)-Sm(4)-N(4)	98.8(3)
O(8)-Sm(4)-O(14)	81.8(3)	O(4)-Sm(1)-O(15)	68.90(19)
O(4)-Sm(1)-O(13)#1	116.3(2)	O(4)-Sm(1)-O(13)	81.7(2)
O(4)-Sm(1)-O(3)	146.7(3)	O(4)-Sm(1)-O(1)	76.1(2)
O(4)-Sm(1)-O(2)	70.8(2)	O(7)-Sm(1)-O(15)	69.5(2)
O(7)-Sm(1)-O(4)	133.8(2)	O(7)-Sm(1)-O(13)#1	96.2(2)

O(7)-Sm(1)-O(13)	87.6(2)	O(7)-Sm(1)-O(3)	74.4(2)
O(7)-Sm(1)-O(1)	149.1(2)	O(7)-Sm(1)-O(2)	71.9(2)
O(7)-Sm(1)-N(1)	99.8(3)	O(13)#1-Sm(1)-O(15)	110.06(18)
O(13)-Sm(1)-O(15)	50.99(18)	O(13)-Sm(1)-O(13)#1	60.7(2)
O(13)#1-Sm(1)-O(3)	67.6(2)	O(13)-Sm(1)-O(3)	122.5(2)
O(13)-Sm(1)-O(1)	107.7(2)	O(13)#1-Sm(1)-O(1)	70.2(2)
O(13)-Sm(1)-N(1)	172.2(3)	O(13)#1-Sm(1)-N(1)	120.4(2)
O(3)-Sm(1)-O(15)	143.4(2)	O(3)-Sm(1)-O(1)	74.8(2)
O(3)-Sm(1)-N(1)	62.6(3)	O(1)-Sm(1)-O(15)	140.8(2)
O(1)-Sm(1)-N(1)	67.0(3)	O(2)-Sm(1)-O(15)	60.74(18)
O(2)-Sm(1)-O(13)	111.62(18)	O(2)-Sm(1)-O(13)#1	166.7(2)
O(2)-Sm(1)-O(3)	113.3(2)	O(2)-Sm(1)-O(1)	123.1(2)
O(2)-Sm(1)-N(1)	68.8(2)	N(1)-Sm(1)-O(15)	129.4(2)
O(15)-Sm(3)-O(20)	139.0(2)	O(15)-Sm(3)-O(19)	130.3(2)
O(15)-Sm(3)-N(7)	142.1(2)	O(15)-Sm(3)-N(3)	107.5(2)
O(20)-Sm(3)-O(19)	50.1(2)	O(20)-Sm(3)-N(7)	25.1(2)
O(20)-Sm(3)-N(3)	84.6(3)	O(10)-Sm(3)-O(15)	63.94(19)
O(10)-Sm(3)-O(20)	129.8(2)	O(10)-Sm(3)-O(19)	80.6(2)
O(10)-Sm(3)-O(9)	101.9(2)	O(10)-Sm(3)-N(7)	105.6(2)
O(10)-Sm(3)-N(3)	138.7(3)	O(10)-Sm(3)-O(2)	75.42(19)
O(7)-Sm(3)-O(15)	71.2(2)	O(7)-Sm(3)-O(20)	77.7(2)
O(7)-Sm(3)-O(10)	132.7(2)	O(7)-Sm(3)-O(19)	120.9(2)
O(7)-Sm(3)-O(9)	125.0(2)	O(7)-Sm(3)-N(7)	100.2(2)
O(7)-Sm(3)-N(3)	68.7(3)	O(7)-Sm(3)-O(2)	70.4(2)
O(7)-Sm(3)-O(8)	108.3(2)	O(19)-Sm(3)-N(7)	25.2(2)
O(19)-Sm(3)-N(3)	122.0(3)	O(9)-Sm(3)-O(15)	149.8(2)
O(9)-Sm(3)-O(20)	70.9(3)	O(9)-Sm(3)-O(19)	67.2(2)
O(9)-Sm(3)-N(7)	65.3(3)	O(9)-Sm(3)-N(3)	64.5(3)
O(9)-Sm(3)-O(2)	144.0(2)	O(2)-Sm(3)-O(15)	61.60(18)
O(2)-Sm(3)-O(20)	83.3(2)	O(2)-Sm(3)-O(19)	77.1(2)
O(2)-Sm(3)-N(7)	80.7(2)	O(2)-Sm(3)-N(3)	138.9(2)
O(8)-Sm(3)-O(15)	71.9(2)	O(8)-Sm(3)-O(20)	145.2(2)
O(8)-Sm(3)-O(10)	72.0(2)	O(8)-Sm(3)-O(19)	130.0(2)
O(8)-Sm(3)-O(9)	78.5(3)	O(8)-Sm(3)-N(7)	142.6(3)
O(8)-Sm(3)-N(3)	67.2(3)	O(8)-Sm(3)-O(2)	131.3(2)

^a Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

6	, <u> </u>	5			
$Nd1^{III}$	C _{4v} JCSAPR	C _{4v} CSAPR	D _{3h} JTCTPR	D _{3h} TCTPR	<i>C</i> _s MFF
	2.846	1.841	4.071	1.885	2.460
$Nd2^{III}$	<i>O</i> _h CU	D _{4d} SAPR	D_{2d} TDD	$C_{2\nu}$ BTPR	$T_d TT$
	3.375	5.208	3.019	5.051	4.106
Nd3 ^{III}	C _{4v} JCSAPR	C _{4v} CSAPR	D _{3h} JTCTPR	D _{3h} TCTPR	<i>C</i> _s MFF
	2.895	1.955	4.115	2.052	2.579
Nd4 ^{III}	C _{4v} JCCU	<i>C</i> _{4v} CCU	C _{4v} CSAPR	$C_{2\nu}$ HH	<i>C</i> _s MFF
	3.877	3.588	7.691	3.831	5.968
Sm1III	C _{4v} JCCU	<i>C</i> _{4v} CCU	C _{4v} CSAPR	<i>C</i> _{2<i>v</i>} HH	<i>C</i> _s MFF
	3.962	3.611	7.578	3.833	5.857
Sm2 ^{III}	C _{4v} JCSAPR	C _{4v} CSAPR	D _{3h} JTCTPR	D _{3h} TCTPR	<i>C</i> _s MFF
	2.685	1.766	3.910	1.901	2.452
Sm3 ^{III}	C _{4v} JCSAPR	C _{4v} CSAPR	D _{3h} JTCTPR	D _{3h} TCTPR	<i>C</i> _s MFF
	2.644	1.658	3.876	1.761	2.237
Sm4 ^{III}	O _h Cube	D4dSAPR	D_{2d} TDD	$C_{2\nu}$ BTPR	$T_d TT$
	3.268	5.181	2.949	5.175	3.984

Table S3 The geometry analysis by SHAPE 2.0 for clusters 1 and 2.

JCSAPR-9=Capped square antiprism J10; CSAPR-9=Spherical capped square antiprism; JTCTPR-9=Tricapped trigonal prism J51; TCTPR-9=Spherical tricapped trigonal prism; MFF-9=Muffin; JCCU-9=Capped cube J8; CCU-9=Spherical-relaxed capped cube; HH-9=Hula-hoop. CU-8=Cube; SAPR-8 = Square antiprism; TDD-8 = Triangular dodecahedron; BTPR-8 = Biaugmented trigonal prism; TT-8=Triakis tetrahedron.

Table S4 Reported Ln–based complexes as catalysts for the cycloaddition reactions of CO₂ with 1ethyl-2-phenylaziridine under mild conditions.

Cot(9/)	$P_{\rm CO_2}$	$T / \circ C$	Tim	Y/	Daf	
Cat. (%)	Co-cal.	MPa	<i>1/1</i> C	e / h	%	Kel
$\{[Cu_2(BCP)(H_2O)_2] \cdot 3DMF_n$	TBAB	2	100	12	>99	1
Zn-MOF	TBAB	2	70	12	>99	2
${Cu_4(CuTBCPPP)(H_2O)_4}_n$	TBAB	2	100	10	>99	3
$\{[NH_2(CH_3)_2][In(CPT)_2]\cdot 3CH_3CN\cdot 3DMA\}_n$	TBAB	2	70	10	99	4
${[Cu_2(L_4^{-})(H_2O)_2] \cdot 3DMF \cdot 2H_2O}_n$	TBAB	0.5	60	12	98	5
$\{[Ni(DCTP)] \cdot 6.5DMF\}_n$	TBAB	2	70	10	95	6
${[Zn(H_2O)(C_5H_7NO_4)] \cdot H_2O}_n$	TBAB/H ₂ O	1	r.t.	24	94	7
${[H_2N(CH_3)_2]_3[Zn_3(BTB)_2(5-$		1	70	10	04	0
atz) ₃]·3EtOH·3H ₂ O·3DMF} _n	IBAB	1	/0	10	94	8
${[Co_2(XN)_2(IPA)_2] \cdot 2H_2O}_n$	TBAB	1	30	10	89	9
Cluster 1	TBAB	1	70	10	94	This Work
Cluster 2	TBAB	1	70	10	92	This Work
	. 1	.1 1	1.1		6.0	0 14

Table S5 Reported Ln–based complexes as catalysts for the cycloaddition reactions of CO₂ with styrene oxide under mild conditions.

Cat. (%)	Co–cat.	$P_{\rm CO_2}$	T/	Tim	Y / %	Ref

		/bar	°C	e / h		
${[Eu(BTB)(phen)] \cdot 4.5DMF \cdot 2H_2O}_n$	TBAB	1	80	12	68	10
3d–4f MOF	TBAB	1	70	12	77	11
$Zn^{II}{}_2Nd^{III}{}_2L_4$	TBAB	1	80	14	88	12
Tb-BDC	TBAB	1	60	12	89	13
$Zn^{II}_{2}Yb^{III}_{2}L_{4}$	TBAB	1	80	14	90	12
Tb ₄ MOF	TBAB	1	60	12	95	14
Yb-mesocate	TBAB	1	120	2.5	95	15
$[Dy_7(CDA)_6(HCOO)_3(\mu_3-OH)_6(H_2O)_8]_n$	TBAB	1	80	12	98	16
${[Ni_3Th_6(\mu_3-O)_4$		1	70	10	> 00	17
$OH)_4(IN)_{12})(H_2O)_{12}]\cdot (OH)_6\cdot 5DMF\cdot 2H_2O\}_n$	IBAB	1	/0	12	>99	1/
Cluster 1	TBAB	1	80	12	97	This Work
Cluster 2	TBAB	1	80	12	96	This Work
Table S6 The ICP results of cluster 1 after	er recycling (1	filter liquor).			
Compounds				Nd^{3+}		
Cluster 1 after catalytic recycling	(filter liquo	or)		0.20 %		
(d) (e)						
(g) (h)		(i) *				
(j) (k)		(1)				

Fig.S1 The structures of recently reported representative complexes as catalyst for the reaction of CO₂ and epoxides. (a) {[Ln₃(μ_6 -CO₃)(μ_3 -OH)₆]OH₃n;¹⁸ (b) {[Eu(BTB)(phen)]·4.5DMF·2H₂O}n;¹⁰ (c) {[TbZn(BPDC)₂(μ_2 -H₂O)Cl(H₂O)₃]·5H₂O·0.5DMA₃n;¹⁹ (d) [Ln₇(CDA)₆(HCOO)₃(μ_3 -OH)₆(H₂O)₈]n;¹⁶ (e) Ln₄Zn₃L₆;²⁰ (f) [Ln₂Zn₄(μ_3 -OH)₂L₄(AcO)₂(NO₃)₂(DMF)₂]·2(CH₃OH);²¹ (g) [Ln₄L₆(NO₃)₄]·4(MeCN);²² (h) Zn₃LnL₄;²³ (i) {(Me₂NH₂)[Tm₃(BDCP)₂)(H₂O)₃]·4DMF·H₂O₃n;²⁴ (j) [Tm₂(BDCP)₂]·3DMF·3H₂O₃n;²⁵ (k) {[Tb₄(BDCP)₂(μ_2 -OH)₂]·3DMF·5H₂O₃n;²⁶ (l) {[CoYb(BDCP)(H₂O)]·3DMF·3H₂O₃n;²⁷

$$\label{eq:Fig.S2} \begin{split} \text{Fig.S2} \ \text{The structures of recently reported representative complexes as catalyst for the reaction of CO_2 and aziridines. (a) MMPF-10;^3 (b) <math>\{[K_{1.2}Na_{2.8}ZnI_8(HL)_{12}]\cdot 4H_2O\}_n;^{28}$$
 (c) $\{[Cu_2(BCP)(H_2O)_2]\cdot 3DMF\}_n;^{29}$ (d) $\{[NH_2(CH_3)_2][In(CPT)_2]\cdot 3CH_3CN\cdot 3DMA\}_n;^4$ (e) $\{[H_2N(CH_3)_2]_3[Zn_3(BTB)_2(5\text{-}atz)_3]\cdot 3EtOH\cdot 3H_2O\cdot 3DMF\}_n.^8 \end{split}$

Fig. S3 The IR spectra clusters 1 and 2.

Fig. S4 The coordinate atom labels of central Nd(III) ions in cluster 1.

Fig. S5 The PXRD of clusters 1 and 2.

Fig. S6 The TGA curves of clusters 1 and 2.

Fig. S7 The The UV-vis spectra of clusters 1, 2 and H_3L ligand.

Fig. S8 XPS spectra of cluster 1. (a) Full spectrum, (b) Nd 4d, (c) O 1s, and (d) N1s spectrum.

Fig. S9 XPS spectra of cluster 2. (a) Full spectrum, (b) Sm 4d, (c) O 1s, and (d) N1s spectrum.

Fig. S10 A possible mechanism for catalyzed reaction.

Fig. S11 The kinetic study for clusters 1 and 2 in the reactions.

Fig. S12 The IR spectra and PXRD of cluster 1 after recycled reaction of CO₂ and styrene oxide.

Fig. S13 The XPS of cluster 1 for the reaction of CO_2 and styrene oxide.

References

- H. Xu, X. F. Liu, C. S. Cao, B. Zhao, P. Cheng and L. N. He, A porous metal–organic framework assembled by [Cu₃₀] nanocages: serving as recyclable catalysts for CO₂ fixation with aziridines, *Adv. Sci.*, 2016, 3, 1600048.
- C. S. Cao, Y. Shi, H. Xu and B. Zhao, A multifunctional MOF as a recyclable catalyst for the fixation of CO₂ with aziridines or epoxides and as a luminescent probe of Cr(VI), *Dalton Trans.*, 2018, 47, 4545-4553.
- 3 X. Wang, W. Y. Gao, Z. Niu, L. Wojas, A. PermanJ, Y. S. Chen, Z. Li, B. Aguila, S. Q. Ma, A metal-metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO₂ with aziridines, *Chem Commun*, 2018, 54, 1170-1173.
- 4 X. R. Tian, Y. Shi, S. L. Hou, Y. Ma, and B. Zhao, Efficient cycloaddition of CO₂ and aziridines activated by a quadruple-interpenetrated Indium–organic framework as a recyclable catalyst, *Inorg. Chem.*, 2021, **60**, 15383–15389.
- 5 C. H. Zhang, Z. L. Wu, R. X. Bai, T. D. Hu, and B. Zhao, Highly efficient conversion of aziridines and CO₂ catalyzed by microporous [Cu₁₂] nanocages, *ACS Appl. Mater. Interfaces*, 2023, 15, 1879-1890.
- Y. Shi, J. Zhao, H. Xu, S. L. Hou and B. Zhao, Eco-friendly co-catalyst-free cycloaddition of CO
 ² and aziridines activated by a porous MOF catalyst, *Sci. China Chem.*, 2021, 64, 1316-1322.

- A. C. Kathalikkattil, R. Roshan, J. Tharun, R. Babu, G. S. Jeong, D. W. Kim, S. J. Choc, D. W.
 Park, A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO₂ fixation reactions under wet conditions, *Chem Commun*, 2016, 52, 280-283.
- X. M. Kang, Z. H. Jiao, X. L. Shi, Y. D. Tian and Z. L. Liu, Difunctional Zn-based metal–organic frameworks: chemical conversion of CO₂ and luminescence recognition for secnidazole, *J. Mater. Chem. C*, 2022, 10, 16078-16087.
- 9 X. M. Kang, Y. Shi, C. S. Cao and B. Zhao, Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO₂ with aziridines, *Sci. China Chem.*, 2019, **62**, 622-628.
- 10 H. Xu, B. Zhai, C. S. Cao and B. Zhao, A bifunctional europium–organic framework with chemical fixation of CO₂ and luminescent detection of Al³⁺, *Inorg. Chem.*, 2016, **55**, 9671-9676.
- 11 W. Z. Qiao, H. Xu, P. Cheng and B. Zhao. 3d–4f heterometal–organic frameworks for efficient capture and conversion of CO₂, *Cryst. Growth Des.*, 2017, **17**, 3128-3133.
- 12 R. L. Zhang, L. Wang, C. Xu, H. Yang, W. M. Chen and G. S. Gao, Anion-induced 3d-4f luminescent coordination clusters: structural characters and chemical fixation of CO₂ under mild conditions. *Dalton Trans.*, 2018, 47, 7159-7165.
- 13 N. Wei, R. X. Zuo, Y. Y. Zhang, Z. B. Han and X. J. Gu, Robust high–connected rare–earth MOFs as efficient heterogeneous catalysts for CO₂ conversion, *Chem. Commun.*, 2017, **53**, 3224-3227.
- 14 J. Dong, H. Xu, S. L. Hou, Z. L. Wu, B. Zhao, Metal–organic frameworks with Tb₄ clusters as nodes: luminescent detection of chromium(VI) and chemical fixation of CO₂, *Inorg. Chem.*, 2017, 56, 6244-6250.
- 15 Q. X. Han, L. Wang, Z. H. Shi, C. Xu, Z. Dong, Z. L. Mou, Self–assembly of luminescent lanthanide mesocates as efficient catalysts for transforming carbon dioxide into cyclic carbonates, *Chem Asian J*, 2017, **12**, 1364-1373.
- 16 T. Q. Song, J. Dong, A. F. Yang, X. J. Che, H. L. Gao, J. Z. Cui and B. Zhao, Wheel-like Ln₁₈ cluster organic frameworks for magnetic refrigeration and conversion of CO₂, *Inorg. Chem.*, 2018, 57, 3144–3150.

- 17 B. Zhao, H. Xu, C. S. Cao, H. S. Hu, S. B. Wang, J. C. Liu, P. Cheng, N. Kaltsoyannis and J. Li, High uptake of ReO₄⁻ by a radiation resistant [Th₄₈Ni₆] nanocage-based metal-organic framework, *Angew. Chem. Int. Ed.*, 2019, **58**, 6022-6027.
- 18 J. Dong, P. Cui, P. F. Shi, Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln₆₀] nanocages, J. Am. Chem. Soc., 2015, **137**, 15988-15991.
- 19 W. Z. Qiao, H. Xu, P. Cheng, B. Zhao, 3d-4f heterometal-organic frameworks for efficient capture and conversion of CO₂, *Cryst. Growth Des.*, 2017, **17**, 3128–3133.
- 20 L. Wang, R. L. Zhang, Q. X. Han, C. Xu, W. M. Chen, H. Yang, G. S. Gao, W. W. Qin, W. S. Liu, Amide-functionalized heterometallic helicate cages as highly efficient catalysts for CO₂ conversion under mild conditions, *Green Chem.*, 2018, **20**, 5311-5317.
- 21 G. S. Gao, L. Wang, R. L. Zhang, C. Xu, H. Yang, W. S. Liu, Hexanuclear 3d–4f complexes as efficient catalysts for converting CO₂ into cyclic carbonates, *Dalton Trans.*, 2019, **48**, 3941-3945.
- 22 W. Hou, G. Wang, X. J. Wu, S. Y. Sun, C. Y. Zhao, W. S. Liu, F. X. Pan, Lanthanide clusters as highly efficient catalysts regarding carbon dioxide activation, *New J. Chem.*, 2020, 44, 5019-5022.
- 23 H. Yang, G. S. Gao, W. M. Chen, L. Wang, W. S. Liu, Self-assembly of tetranuclear 3d-4f helicates as highly efficient catalysts for CO₂ cycloaddition reactions under mild conditions, *Dalton Trans.*, 2020, **49**, 10270-10277.
- 24 H. T. Chen, T. P. Hu, L. M. Fan, X. T. Zhang, One robust microporous Tm^{III}–organic framework for highly catalytic activity on chemical CO₂ fixation and Knoevenagel condensation, *Inorg. Chem.*, 2021, **60**, 1028-1036.
- 25 H. T. Chen, L. M. Fan, T. P. Hu, X. T. Zhang, V=O functionalized {Tm₂}-organic framework designed by postsynthesis modification for catalytic chemical fixation of CO₂ and oxidation of mustard gas, *Inorg. Chem.*, 2021, **60**, 5005–5013.
- 26 H. X. Lv, H. T. Chen, L. M. Fan, X. T. Zhang, Nanocage-based Tb³⁺-organic framework for efficiently catalyzing the cycloaddition reaction of CO₂ with epoxides and Knoevenagel condensation, *Inorg. Chem.*, 2022, 61, 15558–15568.
- 27 H. X. Lv, L. M. Fan, C. X. Jiao, X. T. Zhang, Heterometallic YbCo–organic framework for efficiently catalyzing cycloaddition of CO₂ with epoxides and Knoevenagel condensation, *Cryst. Growth Des.*, 2023, 23, 2882–2892.

- 28 C. S. Cao, Y. Shi, H. Xu, B. Zhao, An uncommon multicentered Zn^I–Zn^I bond-based MOF for CO₂ fixation with aziridines/epoxides, *Chem. Commun.*, 2021, **57**, 7537-7540.
- 29 H. Xu, X. F. Liu, C. S. Cao, A porous metal-organic framework assembled by [Cu₃₀] nanocages: serving as recyclable catalysts for CO₂ fixation with aziridines, *Adv. Sci.*, 2016, 3, 1600048.