Supporting Information

A general strategy to in-situ synthesize hollow metal sulfide/MOF heterostructure for high performance supercapacitor

Yingchao Wang, ^a Guochang Li,^{*,a} Jiachao Zhou, ^a Kai Tao, ^a Wenna Zhao, ^b Linli Chen, ^a Lei Han^{*,a}

^aState Key Laboratory Base of Novel Functional Materials and Preparation Science,

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,

Zhejiang 315211, China.

^bSchool of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China.

*Corresponding authors.

E-mail: liguochang@nbu.edu.cn (G. Li); hanlei@nbu.edu.cn (L. Han)

Figure S1. SEM images (a,b) and XRD patterns (c,d) of CoCH and Co₉S₈. (a,c) CoCH; (b,d) Co₉S₈

Co₉S₈/Co-H₄DOBDC MOF; (c) Co₉S₈/Co-BTC MOF; (d) Co₉S₈/ ZIF-67.

re S3. XPS spectrum of the Co_9S_8/MOF . (a) survey spectrum; (b) Co 2p; (c) S 2p (d) C 1s; (e) O 1s; (f) N 1s.

Figure S4. FTIR spectrum of the CoCH, Co_9S_8 and Co_9S_8/MOF . (a) $Co_9S_8/Co-BTC$ MOF; (b) $Co_9S_8/Co-H_4DOBDC$ MOF; (c) $Co_9S_8/Co-NH_2$ -BDC MOF; (d) Co_9S_8/ZIF -67.

Figure S5. N₂ adsorption-desorption isotherm and pore distribution curve of the Co_9S_8/MOF and Co_9S_8 . (a) $Co_9S_8/Co-BTC$ MOF; (b) $Co_9S_8/Co-H_4DOBDC$ MOF; (c) $Co_9S_8/Co-NH_2$ -BDC MOF; (d) $Co_9S_8/ZIF-67$; (e) Co_9S_8 .

Figure S6. CV curves of the Co_9S_8/MOF at different scan rates. (a) $Co_9S_8/Co-BDC$ MOF; (b) $Co_9S_8/Co-NH_2$ -BDC MOF; (c) $Co_9S_8/Co-H_4DOBDC$ MOF; (d) $Co_9S_8/Co-BTC$ MOF; (e) Co_9S_8/ZIF -67.

Figure S7. CP curves of the $Co_9S_8/MOFs$ at different current densities. (a) $Co_9S_8/Co-BDC$ MOF; (b) $Co_9S_8/Co-NH_2-BDC$ MOF; (c) $Co_9S_8/Co-H_4DOBDC$ MOF; (d) $Co_9S_8/Co-BTC$ MOF; (e) $Co_9S_8/ZIF-67$.

Figure S8. Plot of υ versus $\upsilon^{1/2}$ and b value of the Co₉S₈/MOF. (a) Co₉S₈/Co-NH₂-BDC MOF; (b) Co₉S₈/Co-H₄DOBDC MOF; (c) Co₉S₈/Co-BTC MOF; (d) Co₉S₈/ZIF-67.

Figure S9. Calculated capacitive- and diffusion-controlled contribution of the Co_9S_8/MOF . (a) $Co_9S_8/Co-NH_2$ -BDC MOF; (b) $Co_9S_8/Co-H_4DOBDC$ MOF; (c) $Co_9S_8/Co-BTC$ MOF; (d) $Co_9S_8/ZIF-67$.

Figure S10. The SEM iamges of Co₉S₈/Co-BDC after the electrochemical test.

Figure S11. The electrochemical performance of Co₉S₈/Co-NH₂-BDC MOF//AC ASC in 2 mol L⁻¹ KOH electrolyte. (a) CV curves at different scan rates; (b) CV curves at different potential; (c) GCD curves at different current densities; (d) Areal capacitance; (e) Energy density and power density; (f) Cycling performance.

Figure S12. The electrochemical performance of $Co_9S_8/Co-H_4DOBDC$ MOF//AC ASC in 2 mol L⁻¹ KOH electrolyte. (a) CV curves at different scan rates; (b) CV curves at different potential; (c) GCD curves at different current densities; (d) Areal capacitance; (e) Energy density and power density; (f) Cycling performance.

Figure S13. The electrochemical performance of Co_9S_8/Co -BTC MOF//AC ASC in 2 mol L⁻¹ KOH electrolyte. (a) CV curves at different scan rates; (b) CV curves at different potential; (c) GCD curves at different current densities; (d) Areal capacitance; (e) Energy density and power density; (f) Cycling performance.

Figure S14. The electrochemical performance of $Co_9S_8/ZIF-67//AC$ ASC in 2 mol L⁻¹ KOH electrolyte. (a) CV curves at different scan rates; (b) CV curves at different potential; (c) GCD curves at different current densities; (d) Areal capacitance; (e) Energy density and power density; (f) Cycling performance.

Figure S15. The electrochemical performance of AC in 2 mol L⁻¹ KOH electrolyte. (a) CV curves; (b) GCD curves; (c) Capacitances versus current densities.

Electrode material	Specific capacity	Specific capacitance	Cycle	R _s /R _{ct}
			performance	
СоСН	126.4 mAh cm ⁻²	$1.01 \mathrm{F} \mathrm{cm}^{-2} (0.455 \mathrm{C} \mathrm{cm}^{-2})$	68.60%	0.8957/1.052
Co_9S_8	537.8 mAh cm ⁻²	$4.30 \text{F cm}^{-2}(1.94 \text{C cm}^{-2})$	71.33%	0.8316/0.219
Co ₉ S ₈ /Co-BDC MOF	1980.0 mAh cm ⁻²	15.84F cm ⁻² (4.53 C cm ⁻²)	87.50%	0.74111/0.057
Co ₉ S ₈ /Co-NH ₂ -BDC MOF	702.3 mAh cm ⁻²	$5.62 \text{F cm}^{-2}(7.13 \text{C cm}^{-2})$	93.44%	0.54321/0.1006
Co ₉ S ₈ /Co-H ₄ DOBDC MOF	1257.5 mAh cm ⁻²	$10.06F \text{ cm}^{-2}(2.33C \text{ cm}^{-2})$	98.28%	0.6761/0.216
Co ₉ S ₈ /Co-BTC MOF	938.9 mAh cm ⁻²	$7.51 \mathrm{F} \mathrm{cm}^{-2} (3.38 \mathrm{C} \mathrm{cm}^{-2})$	83.92%	0.6162/0.2122
Co ₉ S ₈ /ZIF-67	661.1 mAh cm ⁻²	$5.29 \text{F cm}^{-2}(2.38 \text{C cm}^{-2})$	91.89%	0.6256/0.2129
$C_{09}S_8/ZIF-6/$	$661.1 \text{ mAn cm}^{-2}$	$5.29F \text{ cm}^{-2}(2.38C \text{ cm}^{-2})$	91.89%	0.6256/0.2129

Table S1 The electrochemical performance of CoCH, Co_9S_8 and Co_9S_8/MOF in three-electrode system.

Table S2 The electrochemical performance of the $Co_9S_8/MOFs//AC$ ASC

ASC	Specific capacitance	Energy density	Power density	Cycle performance
Co ₉ S ₈ /Co-BDC MOF//AC	2.49 F cm ⁻²	0.87 mWh cm ⁻²	1.68 mW cm ⁻²	95.44%
Co ₉ S ₈ /Co-NH ₂ -BDC MOF//AC	1.66 F cm ⁻²	0.62 mWh cm ⁻²	1.78 mW cm ⁻²	89.39%
Co ₉ S ₈ /Co-H ₄ DOBDC MOF//AC	1.99 F cm ⁻²	0.61 mWh cm ⁻²	1.48 mW cm ⁻²	92.48%
Co ₉ S ₈ /Co-BTC MOF//AC	1.48 F cm ⁻²	0.49 mWh cm ⁻²	1.59 mW cm ⁻²	91.53%
Co ₉ S ₈ /ZIF-67//AC	1.37 F cm ⁻²	0.46 mWh cm ⁻²	1.52 mW cm ⁻²	92.37%