How hydrothermal synthesis improves the synthesis of (Zr,Ce)SiO₄ solid solutions

Thomas Barral¹, Paul Estevenon², Yann Chanteau¹, Thibault Kaczmarek^{1,2}, Andrew C. Strzelecki^{3,4,5}, Denis Menut⁶, Eleonore Welcomme², Stephanie Szenknect¹, Philippe Moisy², Xiaofeng Guo^{3,4}, Nicolas Dacheux^{1,*}

¹ ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Bagnols-sur-Cèze, France

² CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France.

³ Department of Chemistry, Washington State University, Pullman, Washington 99164, United States

⁴ School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States

⁵ Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA

⁶ Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex France

SUPPORTING INFORMATION

Label	Zr:Ce mol ratio	C _{Zr} (mol·L ⁻¹)	C _{Ce} (mol·L ⁻¹)	pH _{initial}	T (°C)	Δt (days)	Final phase	
(1)				$[H_3O^+] = 1 \text{ mol} \cdot L^{-1}$			ZrSiO ₄	
(2)				1.0			$ZrSiO_4$	
(3)				2.0			$ZrSiO_4 + \epsilon ZrO_2$	
(4)				3.1	250		$ZrSiO_4 + \epsilon ZrO_2$	
(5)			0	4.1		20	$ZrSiO_4$	
(6)	100.0	0.20		4.9			$ZrSiO_4$	
(7)	100.0			6.0			$ZrSiO_4$	
(8)				7.0			$ZrSiO_4$	
(9)				8.0			$ZrSiO_4$	
(10)				9.0			$ZrSiO_4$	
(11)				10.0			ZrSiO ₄ + another phase	
(12)				11.7			another phase	
(13)	100.0	0.20	0	1.0	250	1	ZrSiO ₄	
(14)	100.0	0.20	0	1.0	230	7	ZrSiO ₄	
(15)	100.0	1.0	0	1.0	250	7	$ZrSiO_4$	
(16)	100.0	0.05	0	1.0	230	/	$ZrSiO_4 + ZrO_2$	
(17)	95:5	0.19	0.01				(Zr,Ce)SiO ₄	
(18)	90:10	0.18	0.02				(Zr,Ce)SiO ₄	
(19)	80:20	0.16	0.04				(Zr,Ce)SiO ₄	
(20)	60:40	0.12	0.08	1.0			$(Zr,Ce)SiO_4 + ZrO_2$	
(21)	50:50	0.10	0.10	1.0 250		1	$\begin{array}{c} (Zr,Ce)SiO_4 + ZrO_2 \\ + CeO_2 \end{array}$	
(22)	40:60	0.08	0.12				$\begin{array}{c} (Zr,Ce)SiO_4 + ZrO_2 \\ + CeO_2 \end{array}$	
(23)	30:70	0.06	0.14				$ZrO_2 + CeO_2$	
(24)	0:100	0	0.20	6.5	150	7	CeSiO ₄	

Table SI 1. Synthesis parameters for the presented (Zr,Ce)SiO₄ hydrothermal syntheses.

Synthesis	$\mathrm{pH}_{\mathrm{ini}}$	<i>a</i> (Å)	<i>c</i> (Å)	$V(\text{\AA})$
(1)	$[HNO_3] = 1.0 \text{ mol} \cdot L^{-1}$	6.612(5)	5.973 (6)	261.1(7)
(2)	1.0	6.627(4)	5.979(4)	262.6(5)
(3)	2.0	6.627(3)	5.982(4)	262.7(4)
(4)	3.1	6.628(5)	5.980(6)	262.7(7)
(5)	4.1	6.623(4)	5.972(5)	262.0(5)
(6)	4.9	6.625(7)	5.972(8)	262.1(9)
(7)	6.0	6.625(5)	5.975(6)	262.2(7)
(8)	7.0	6.621(7)	5.968(8)	261.6(9)
(9)	8.0	6.618(7)	5.970(8)	261.5(9)
(10)	9.0	6.614(6)	5.974(7)	261.3(8)

Table SI 2. Unit cell parameters and volume obtained by Rietveld refinements made from the
PXRD patterns of pristine $ZrSiO_4$ samples prepared under hydrothermal conditions
 $(\Delta t = 20 \text{ days}, T = 250^{\circ}\text{C})$ with starting zirconium and silicate concentrations of
 $0.2 \text{ mol}\cdot\text{L}^{-1}$ and with various initial pH values.

Figure SI 1. SEM micrographs recorded for **a**) pristine (14) and **b**) annealed (1000°C) $ZrSiO_4$ sample prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 1.0) starting with zirconium and silicate concentrations of 0.2 mol·L⁻¹.

Figure SI 2. PXRD patterns obtained for $ZrSiO_4$ samples prepared under hydrothermal conditions (20 days, $T = 250^{\circ}C$) starting with zirconium and silicate concentrations of 0.2 mol·L⁻¹ and for various initial pH values: 1.0 mol.L⁻¹ HNO₃ (1), pH = 1.0 (2), pH = 2.0 (3), pH = 3.1 (4), pH = 4.1 (5), pH = 4.9 (6), pH = 6.0 (7), pH = 7.0 (8), pH = 8.0 (9), pH = 9.0 (10), pH = 10.0 (11) and pH = 11.7 (12), plotted in scattering vector.

Figure SI 3. PXRD patterns obtained for $ZrSiO_4$ samples prepared under hydrothermal conditions (T = 250°C, pH = 1) starting with zirconium and silicate concentrations of 0.2 mol·L⁻¹ and for holding time of 1 day (13), 7 days (14) and 20 days (2), plotted in scattering vector.

Figure SI 4. PXRD patterns obtained for $ZrSiO_4$ samples prepared under hydrothermal conditions (T = 250°C, 7 days) at pH = 1.0 starting with zirconium and silicate concentrations of 1.0 mol·L⁻¹ (15), 0.2 mol·L⁻¹ (14) and 0.05 mol·L⁻¹ (16), plotted in scattering vector.

Figure SI 5. PXRD patterns recorded for a pristine and annealed (after TGA, 1000°C) $ZrSiO_4$ sample (14) prepared under hydrothermal conditions (T = 250°C, 7 days) at pH = 1.0 starting with zirconium and silicate concentrations of 0.2 mol·L⁻¹, plotted in scattering vector.

Figure SI 6. PXRD patterns recorded for pristine $(Zr,Ce)SiO_4$ solid solutions with various chemical compositions prepared under hydrothermal conditions $(T = 250^{\circ}C, 7 \text{ days}, \text{pH} = 1.0)$ starting with Zr + Ce and silicate concentrations of 0.2 mol·L⁻¹ for Zr:Ce = 100:0 (14), 95:5 (17), 90:10 (18), 80:20 (19), 60:40 (20), 50:50 (21), 40:60 (22), 30:70 (23). * Reference CeSiO_4 sample (T = 150^{\circ}C, 7 \text{ days}, \text{pH} = 6.5) starting with cerium and silicate concentrations of 0.2 mol·L⁻¹ (24), plotted in scattering vector.

Figure SI 7. Synchrotron PXRD patterns recorded for $(Zr,Ce)SiO_4$ solid solutions annealed at 1000°C with Zr:Ce = 100:0 (14), Zr:Ce = 95:5 (17), Zr:Ce = 90:10 (18), Zr:Ce = 80:20 (19), Zr:Ce = 60:40 (20) and Zr:Ce = 50:50 (21) prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 1.0) starting with Zr + Ce and silicate concentrations of 0.2 mol·L⁻¹, plotted in scattering vector.

position was difficult to determine by IR spectroscopy was difficult to determine with a good accuracy due to its low intensity and nearness with SiO₂ characteristic band. Moreover, v₁ band position for Zr:Ce = 60:40 by Raman spectroscopy was masked by v₃ band and v₂ band position for Zr:Ce = 50:50 by Raman spectroscopy masked by CeO₂ T_{2g} band.

Errors bars for v_1 bands position are smaller than the data point size (± 1 cm⁻¹).