Supporting Information for

Peroxido-bridged chiral double-decker dysprosium macrocycles

Chen Zhao,^{a,b,‡} Tingting Wang,^{a,b,‡} Xiaodong Liu,^{a,b} Zhenhua Zhu,^{*,a,c} Xu Ying,^{a,b} Xiao-Lei Li^a and Jinkui Tang^{*,a,b}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China ^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China [‡]These authors contributed equally to this work.

*Corresponding authors. Email: zhuzh@ciac.ac.cn; tang@ciac.ac.cn

Contents

X-ray crystallography	S2-S12
Magnetic measurements	S12-S18
References	S19

Compound reference	1	2
Chemical formula	$C_{183}H_{159}B_2Dy_2N_{19}O_5$	$C_{180}H_{154.5}B_2Dy_2N_{17.5}O_5$
Formula Mass	3050.90	2989.32
Temperature (K)	180.0	180.0
Crystal system	monoclinic	monoclinic
Space group	C2	C2
a (Å)	29.7238(10)	29.7543(12)
b (Å)	17.4037(6)	17.3502(7)
<i>c</i> (Å)	62.791(2)	62.722(2)
α (°)	90	90
β (°)	103.2170(10)	103.1690(10)
γ (°)	90	90
Unit cell volume (ų)	31621.5(19)	31528(2)
Ζ	8	8
$ ho_{calc}$ (g/cm ³)	1.282	1.260
μ / mm ⁻¹	1.001	1.002
F (000)	12576.0	12312
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
Reflections collected	160554	131144
Independent reflections	55747	54639
R _{int}	0.0496	0.1338
GOF on F ²	1.028	1.001
$R_1 (l \ge 2\sigma (l))$	0.0400	0.1029
wR_2 (all data)	0.0843	0.3448
CCDC number	2223655	2223656

X-ray crystallography Table S1. Crystal Data and Structure Refinement for 1 and 2

	1	2
Dy1-01	2.160(5)	Dy1-01 2.232(17)
Dy1-02	2.238(6)	Dy1-O2 2.202(18)
Dy1-03	2.242(5)	Dy1-O3 2.207(16)
Dy2-02	2.255(5)	Dy2-O2 2.299(17)
Dy2-03	2.254(5)	Dy2-O3 2.247(17)
Dy2-04	2.194(5)	Dy2-O4 2.138(18)
Dy3-05	2.189(4)	Dy3-O5 2.187(16)
Dy3-06	2.243(5)	Dy3-O6 2.281(16)
Dy3-07	2.248(5)	Dy3-07 2.249(16)
Dy4-06	2.254(5)	Dy4-O6 2.209(16)
Dy4-07	2.233(5)	Dy4-07 2.231(17)
Dy4-08	2.175(4)	Dy4-08 2.205(16)
Dy1-N1	2.685(6)	Dy1-N1 2.70(2)
Dy1-N2	2.648(6)	Dy1-N2 2.69(2)
Dy1-N3	2.701(6)	Dy1-N3 2.71(2)
Dy1-N4	2.696(6)	Dy1-N4 2.62(2)
Dy1-N5	2.655(5)	Dy1-N5 2.71(2)
Dy1-N6	2.688(6)	Dy1-N6 2.65(2)
Dy2-N7	2.606(6)	Dy2–N7 2.64(2)
Dy2-N8	2.681(5)	Dy2–N8 2.69(2)
Dy2-N9	2.650(6)	Dy2-N9 2.61(2)
Dy2-N10	2.588(6)	Dy2-N10 2.60(2)
Dy2-N11	2.668(6)	Dy2-N11 2.67(2)
Dy2-N12	2.616(5)	Dy2-N12 2.62(2)
Dy3-N13	2.611(5)	Dy3–N13 2.58(2)
Dy3-N14	2.613(6)	Dy3-N14 2.63(2)
Dy3-N15	2.715(6)	Dy3-N15 2.71(2)
Dy3-N16	2.662(6)	Dy3-N16 2.66(2)
Dy3-N17	2.603(6)	Dy3-N17 2.59(2)
Dy3-N18	2.658(5)	Dy3-N18 2.60(2)
Dy4-N19	2.681(6)	Dy4-N19 2.70(2)
Dy4-N20	2.699(6)	Dy4–N20 2.67(2)
Dy4-N21	2.679(6)	Dy4-N21 2.63(2)
Dy4-N22	2.678(6)	Dy4-N22 2.69(2)
Dy4-N23	2.681(6)	Dy4-N23 2.62(2)
Dy4-N24	2.641(6)	Dy4-N24 2.60(2)
02-03 1	1.495(6)	02-03 1.46(2)
06-07 1	L.494(6)	06–07 1.48(2)

 Table S2.
 Selected bond distances (Å) for complexes 1 and 2.

1	2
Dy1-O2-Dy2 141.3(2)	Dy1-O2-Dy2 140.1(8)
Dy1-O3-Dy2 141.0(2)	Dy1-O3-Dy2 143.6(9)
Dy3-O6-Dy4 140.5(2)	Dy3-O6-Dy4 141.0(8)
Dy3-O7-Dy4 141.7(2)	Dy3-O7-Dy4 141.7(8)
O1-Dy1-O2 161.09(18)	O1-Dy1-O2 160.6(6)
O1-Dy1-O3 159.45(18)	O1-Dy1-O3 160.6(7)
O4-Dy2-O2 162.47(18)	O4-Dy2-O2 162.5(7)
O4-Dy2-O3 158.79(18)	O4-Dy2-O3 160.0(6)
O5-Dy3-O6 158.34(17)	O5-Dy3-O6 158.4(6)
O5-Dy3-O7 162.89(17)	O5-Dy3-O7 163.2(6)
O8-Dy4-O6 160.89(18)	O8-Dy4-O6 160.1(6)
O8-Dy4-O7 159.82(17)	O8-Dy4-O7 159.6(6)
N1-Dy1-N2 60.15(18)	N1-Dy1-N2 60.2(7)
N2-Dy1-N3 60.40(18)	N2-Dy1-N3 57.5(7)
N3-Dy1-N4 60.20(17)	N3-Dy1-N4 62.0(7)
N4-Dy1-N5 60.46(17)	N4-Dy1-N5 61.6(7)
N5-Dy1-N6 60.42(18)	N5-Dy1-N6 59.4(7)
N6-Dy1-N1 60.58(18)	N6-Dy1-N1 61.6(7)
N7-Dy2-N8 60.42(17)	N7-Dy2-N8 60.7(7)
N8-Dy2-N9 60.65(18)	N8-Dy2-N9 59.5(7)
N9-Dy2-N10 60.54(18)	N9-Dy2-N10 61.2(7)
N10-Dy2-N11 60.94(18)	N10-Dy2-N11 60.6(7)
N11-Dy2-N12 60.71(18)	N11–Dy2–N12 60.9(7)
N12-Dy2-N7 61.53(18)	N12-Dy2-N7 62.2(7)
N13-Dy3-N14 61.37(18)	N13-Dy3-N14 61.3(7)
N14-Dy3-N15 60.50(18)	N14–Dy3–N15 58.3(7)
N15-Dy3-N16 59.33(17)	N15-Dy3-N16 60.9(7)
N16-Dy3-N17 61.32(17)	N16–Dy3–N17 62.0(6)
N17-Dy3-N18 60.77(18)	N17–Dy3–N18 61.6(7)
N18-Dy3-N13 61.26(17)	N18–Dy3–N13 60.3(7)
N19-Dy4-N20 60.33(19)	N19–Dy4–N20 61.8(7)
N20-Dy4-N21 60.07(18)	N20-Dy4-N21 58.9(7)
N21-Dy4-N22 60.19(18)	N21–Dy4–N22 60.3(6)
N22-Dy4-N23 60.81(18)	N22-Dy4-N23 62.0(7)
N23-Dy4-N24 60.71(17)	N23-Dy4-N24 61.0(7)
N24-Dy4-N19 60.13(18)	N24–Dy4–N19 58.3(7)

 Table S3. Selected bond angles (°) for complexes 1 and 2.

3	4
$C_{144}H_{126}B_2CI_2Dy_2N_{18}O_2$	$C_{144}H_{126}B_2CI_2Dy_2N_{18}O_2$
2558.14	2558.14
180.0	180.0
orthorhombic	orthorhombic
P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
15.7298(3)	15.7450(3)
16.3326(4)	16.3240(4)
47.7251(10)	47.7781(12)
90	90
90	90
90	90
12261.0(5)	12280.0(5)
4	4
1.386	1.384
1.315	1.313
5232.0	5232.0
ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
90517	83424
21667	21647
0.0681	0.0503
1.061	1.032
0.0474	0.0438
0.1321	0.1149
2228952	2228983
	3 $C_{144}H_{126}B_2Cl_2Dy_2N_{18}O_2$ 2558.14 180.0 orthorhombic $P2_12_12_1$ 15.7298(3) 16.3326(4) 47.7251(10) 90 90 90 90 90 12261.0(5) 4 1.386 1.315 5232.0 ΜοΚα (λ = 0.71073) 90517 21667 0.0681 1.061 0.0474 0.1321 2228952

 Table S4. Crystal Data and Structure Refinement for 3 and 4.

	3	4
Dy1-Cl1	2.663(3)	Dy1-Cl1 2.639(2)
Dy2-Cl2	2.640(3)	Dy2-Cl2 2.669(3)
Dy1-01	2.274(6)	Dy1-O1 2.265(5)
Dy1-02	2.236(7)	Dy1-O2 2.263(6)
Dy2-01	2.255(6)	Dy2-O1 2.258(5)
Dy2-02	2.255(7)	Dy2-O2 2.237(6)
Dy1-N1	2.648(7)	Dy1-N1 2.635(7)
Dy1-N2	2.664(9)	Dy1-N2 2.639(6)
Dy1-N3	2.640(9)	Dy1-N3 2.629(7)
Dy1-N4	2.621(8)	Dy1-N4 2.627(6)
Dy1-N5	2.633(8)	Dy1-N5 2.680(7)
Dy1-N6	2.620(8)	Dy1-N6 2.644(7)
Dy2-N7	2.621(7)	Dy2-N7 2.638(7)
Dy2-N8	2.637(8)	Dy2-N8 2.668(8)
Dy2-N9	2.629(7)	Dy2-N9 2.642(7)
Dy2-N10	2.648(7)	Dy2-N10 2.631(7)
Dy2-N11	2.684(8)	Dy2-N11 2.630(7)
Dy2-N12	2.624(7)	Dy2-N12 2.598(7)
01-02	1.546(9)	01–02 1.532(8)

 Table S5. Selected bond distances (Å) for complexes 3 and 4.

 Table S6. Selected bond angles (°) for complexes 3 and 4.

3	4
Dy1-O1-Dy2 138.5(3)	Dy1-O1-Dy2 139.5(3)
Dy1-O2-Dy2 141.2(3)	Dy1-O2-Dy2 141.1(3)
Cl1-Dy1-O1 158.09(18)	Cl1-Dy1-O1 161.89(15)
Cl1-Dy1-O2 161.55(19)	Cl1-Dy1-O2 158.34(16)
Cl2-Dy2-O1 161.58(18)	Cl2-Dy2-O1 158.76(16)
Cl2-Dy2-O2 158.22(18)	Cl2-Dy2-O2 161.22(16)
N1-Dy1-N2 59.8(3)	N1-Dy1-N2 60.5(2)
N2-Dy1-N3 60.1(3)	N2-Dy1-N3 61.1(2)
N3-Dy1-N4 60.8(3)	N3-Dy1-N4 60.6(2)
N4-Dy1-N5 61.0(3)	N4-Dy1-N5 60.4(2)
N5-Dy1-N6 60.9(3)	N5-Dy1-N6 61.1(2)
N6-Dy1-N1 60.5(2)	N6-Dy1-N1 60.7(2)
N7-Dy2-N8 60.7(2)	N7-Dy2-N8 60.1(2)
N8-Dy2-N9 60.9(2)	N8-Dy2-N9 59.9(2)
N9-Dy2-N10 60.7(2)	N9-Dy2-N10 60.5(2)
N10-Dy2-N11 61.0(3)	N10-Dy2-N11 61.1(2)
N11-Dy2-N12 59.7(2)	N11-Dy2-N12 60.8(2)
N12-Dy2-N7 61.2(2)	N12-Dy2-N7 61.3(2)

	1			
Coordination Geometry	Dy1	Dy2	Dy3	Dy4
Enneagon (D _{9h})	34.610	34.479	34.793	34.124
Octagonal pyramid (C_{8v})	24.929	25.686	25.854	25.055
Heptagonal bipyramid (D _{7h})	16.177	16.711	16.482	15.788
Johnson triangular cupola J3 (C_{3v})	15.214	14.420	14.222	15.263
Capped cube J8 (C_{4v})	8.314	6.681	6.650	8.333
Spherical-relaxed capped cube (C_{4v})	7.227	5.538	5.512	7.182
Capped square antiprism J10 (C_{4v})	12.003	12.542	12.640	11.889
Spherical capped square antiprism (C_{4v})	11.855	12.423	12.473	11.825
Tricapped trigonal prism J51 (D _{3h})	11.237	11.989	12.071	11.168
Spherical tricapped trigonal prism (D _{3h})	12.286	12.763	12.803	12.309
Tridiminished icosahedron J63 (C_{3v})	9.664	11.117	11.006	9.832
Hula-hoop (C_{2v})	1.923	2.262	2.243	1.900
Muffin (<i>C</i> _s)	10.057	10.439	10.516	10.020

Table S7. The CShM values calculated by SHAPE 2.1 for **1**. The lowest CShM value is highlighted.^{1, 2}

 Table S8. The CShM values calculated by SHAPE 2.1 for 2. The lowest CShM value is highlighted.^{1, 2}

	2			
Coordination Geometry	Dy1	Dy2	Dy3	Dy4
Enneagon (D _{9h})	34.792	34.660	35.174	34.042
Octagonal pyramid (C_{8v})	24.587	25.496	25.595	24.869
Heptagonal bipyramid (D _{7h})	15.765	16.690	16.789	15.563
Johnson triangular cupola J3 (C_{3v})	15.070	13.965	13.941	15.227
Capped cube J8 (C_{4v})	8.233	6.819	6.920	8.019
Spherical-relaxed capped cube (C_{4v})	7.177	5.579	5.745	6.887
Capped square antiprism J10 (C_{4v})	11.726	12.915	12.637	11.709
Spherical capped square antiprism (C_{4v})	11.711	12.782	12.560	11.558
Tricapped trigonal prism J51 (D _{3h})	11.315	12.267	12.101	11.061
Spherical tricapped trigonal prism (D _{3h})	12.259	13.049	12.816	12.128
Tridiminished icosahedron J63 (C_{3v})	9.847	11.148	10.844	10.013
Hula-hoop (C _{2v})	1.977	2.477	2.220	1.965
Muffin (<i>C</i> _s)	9.936	10.725	10.765	9.691

	3		4	
Coordination Geometry	Dy1	Dy2	Dy1	Dy2
Enneagon (D _{9h})	35.339	35.403	35.581	35.420
Octagonal pyramid (C_{8v})	25.485	25.621	25.534	25.521
Heptagonal bipyramid (D _{7h})	16.507	16.093	16.097	16.629
Johnson triangular cupola J3 (C_{3v})	13.649	14.433	14.314	13.788
Capped cube J8 (C_{4v})	8.692	9.078	9.166	8.653
Spherical-relaxed capped cube (C_{4v})	7.157	7.536	7.598	7.118
Capped square antiprism J10 (C_{4v})	10.559	9.519	9.560	10.443
Spherical capped square antiprism (C_{4v})	10.113	9.135	9.186	10.013
Tricapped trigonal prism J51 (D _{3h})	10.520	9.735	9.814	10.474
Spherical tricapped trigonal prism (D _{3h})	10.299	9.436	9.493	10.245
Tridiminished icosahedron J63 (C_{3v})	7.481	8.793	8.698	7.547
Hula-hoop (C_{2v})	2.516	2.598	2.642	2.593
Muffin (<i>C</i> _s)	8.019	7.381	7.389	7.931

Table S9. The CShM values calculated by SHAPE 2.1 for **3** and **4**. The lowest CShM value is highlighted.^{1, 2}

Table S10. Structural and magnetic parameters for dinuclear hexaazamacrocyclicSMMs.

Complex	1	Dy ₂ -OH-Me	Dy ₂ -OH-SMe	Dy ₂ -F
Dy–O/F _{outer} (Å)	2.179	2.144	2.170	2.184
Dy–O/F _{inner} (Å)	2.246	2.288	2.285	2.267
Dy–N _{equatorial} (Å)	2.658	2.665	2.672	2.654
Dy–Dy _{intramolecular} (Å)	4.236	3.828	3.822	3.808
U _{eff} (K)	60(3)	230(19)	141(6)	39(3)
C	$1.4 imes 10^{-2}$	2.9	8.94	2.3
n	3.7	2.47	2.38	2.1
Hysteresis loop (1.9 K)	Yes	No	No	No
Ref.	This work	[3]	[4]	[5]

Note: All bond distances refer to the average values.

Fig. S1 Powder XRD analyses of complexes **1**-**4**. The blue lines are simulated data from single crystal data.

Fig. S2 Thermogravimetric analysis of complexes 1-4.

Fig. S3 The packing diagram for **1** shown along the crystallographic *b* axis gives the shortest intermolecular Dy…Dy distance of 14.198 Å. The hydrogen atoms are omitted for clarity.

Fig. S4 The packing diagram for **2** shown along the crystallographic *b* axis gives the shortest intermolecular Dy…Dy distance of 14.180 Å. The hydrogen atoms are omitted for clarity.

Fig. S5 Crystal structure of **1** (left). Hydrogen atoms, solvents, counter ions and axial ligands are omitted for clarity. The π - π stacking interaction between the equatorial pyridine ring and one axial benzene unit in **1** (right).

Fig. S6 Crystal structures of **3** (left) and **4** (right). Hydrogen atoms, solvents and counter ions are omitted for clarity. Displacement ellipsoids set at the 30% probability level. Color code: Dy, violet; O, red; N, blue; C, gray.

Fig S7 Ground-state magnetic anisotropy of complex **1-Dy1Dy2** (left) and **2-Dy1Dy2** (right). The violet lines represent the orientation of the anisotropy axis for Dy ions.⁶

Fig S8 Ground-state magnetic anisotropy of complex **1-Dy3Dy4** (left) and **2-Dy3Dy4** (right). The violet lines represent the orientation of the anisotropy axis for Dy ions.⁶

Magnetic measurements

Fig. S9 Field dependence of magnetization between 0 and 70 kOe and at temperatures of 1.9, 3.0, and 5.0 K for **1**. Inset: M vs. H/T plots for **1** at indicated temperatures.

Fig. S10 Temperature dependence of in-phase (χ ') and out-of-phase susceptibility (χ '') for **1** under zero dc field at 997 Hz.

Fig. S11 Cole-Cole plots for **1**. The solid lines are obtained by fitting experimental data to generalized Debye model.

Fig. S12 Frequency dependence of the out-of-phase susceptibility (χ'') for **1** under zero dc field in the temperature range of 2-5 K. Solid lines are a guide to the eye.

Fig. S13 Field dependence of magnetization between 0 and 70 kOe and at temperatures of 1.9, 3.0, and 5.0 K for **2**. Inset: *M vs. H/T* plots for **2** at indicated temperatures.

Fig. S14 Temperature dependence of $\chi_M T$ products at 1000 Oe measured for **2**.

Fig. S15 Magnetic hysteresis loop for **2**. The data were collected at 1.9 K using an average field sweep speed of 18 Oe s⁻¹.

Fig. S16 Frequency dependence of the out-of-phase susceptibility (χ'') for **2** under a zero dc field at ac frequencies of 1-1488 Hz in the temperature range of 6 to 30 K (2 K interval). Solid lines are a guide to the eye.

Fig. S17 Cole-Cole plots for **2**. The solid lines are obtained by fitting experimental data to generalized Debye model.

Fig. S18 Temperature dependence of the relaxation time in the form of natural logarithm for **2** under zero dc field. The solid line represents the best fit. The fitting equation is $\ln(\tau) = -\ln[CT^n + \tau_0^{-1}\exp(-U_{eff}/k_BT)]$, giving $U_{eff}/k_B = 59(3)$ K, $\tau_0 = 6.4 \times 10^{-5}$ s, $C = 1.3 \times 10^{-2} \text{ s}^{-1}\text{K}^{-n}$ and n = 3.7 (adjusted $R^2 = 0.9993$).

Fig. S19 Temperature dependence of out-of-phase susceptibility (χ '') for **3** under zero dc field. Solid lines are a guide to the eye.

Fig. S20 Frequency dependence of out-of-phase susceptibility (χ '') for **3** under zero dc field. Solid lines are a guide to the eye.

References

- 1. D. Casanova, J. Cirera, M. Llunell, P. Alemany, D. Avnir and S. Alvarez, *J. Am. Chem. Soc.*, 2004, **126**, 1755-1763.
- 2. M. Pinsky and D. Avnir, *Inorg. Chem.*, 1998, **37**, 5575-5582.
- 3. C. Zhao, Z. Zhu, X.-L. Li and J. Tang, Inorg. Chem. Front., 2022, 9, 4049-4055.
- 4. Z. Zhu, C. Zhao, Q. Zhou, S. Liu, X.-L. Li, A. Mansikkamäki and J. Tang, *CCS Chem.*, 2022, **4**, 3762-3771.
- 5. X. Liu, C. Zhao, J. Wu, Z. Zhu and J. Tang, *Dalton Trans.*, 2022, **51**, 16444-16447.
- 6. N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, *Nat. Commun.*, 2013, **4**, 2551.