Supporting Information

Halogen-modified Metal–Organic Frameworks for Efficient Separation of Alkane from Natural Gas

Zhirong Song,^a Yanchun Zheng,^a Yiqi Chen,^a Youlie Cai,^a Rong-Jia Wei,^b Junkuo Gao*^a

^a Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b College of Chemistry and Materials Science, Jinan University, Guangzhou 510632,

China

*Corresponding Author:

Junkuo Gao

Tel.: (+86) 0571-86843618

E-mail: jkgao@zstu.edu.cn

IAST adsorption selectivity

The selectivity of DMOF-X for CH_4 , C_2H_6 , and C_3H_8 was calculated using the ideal adsorption solution theory. The adsorption selectivity is defined by the following equation:

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

In the formula, q_1 and q_2 are the adsorption capacity of component 1 and component 2 at equilibrium, and p_1 and p_2 are the gas partial pressures of component 1 and component 2.

Isosteric heat of adsorption

The adsorption enthalpies of CH₄(at 273 and 298K), C₂H₆ (at 273 and 298K) and C₃H₈ (at 273 and 298K) on DMOF-X were calculated using the Virial method. The steps are as follows: First, calculate the empirical constant a_i and b_i based on the adsorption data at different temperatures, and then calculate it using the following equation:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

Among them, N is the gas intake (mg g⁻¹), P is the pressure (mmHg), T is the temperature (K), a and b are empirical constants, m and n are the number of coefficients required to adequately describe the isotherm. Then the following expression evaluates Q_{st} :

$$Q_{st} = -R \sum_{i=0}^{m} a_i N_i$$

where R is the gas constant.

Figure S1. As-synthesized and after adsorbed PXRD patterns for DMOF-X.

Figure S2. TGA curve of DMOF and DMOF-X under N_2 .

Figure S3. Nitrogen sorption isotherms at 77 K for DMOF.

Figure S4. corresponding pore size distribution of DMOF-X calculated by DFT

method.

Figure S5. Single-component isotherms of CH₄, C₂H₆, and C₃H₈ for DMOF at 298 K.

Figure S6. IAST selectivity of the DMOF.

Figure S7. CH₄, C₂H₆, and C₃H₈ adsorption isotherms of DMOF-X at 273 K.

Figure S8. Isosteric heats of C₃H₈, C₂H₆, and CH₄ on DMOF.

Figure S9. Isosteric heats of C_3H_8 , C_2H_6 , and CH_4 on DMOF-F.

Figure S10. Isosteric heats of C_3H_8 , C_2H_6 , and CH_4 on DMOF-Br.

Figure S11. The fitting parameters for Single Sites Langmuir-Freundlich isotherms model for DMOF at 298K (a) CH_4 (b) C_2H_6 (C) C_3H_8 .

Figure S12. The fitting parameters for Single Sites Langmuir-Freundlich isotherms

model for DMOF-F at 298K (a) CH_4 (b) C_2H_6 (C) C_3H_8 .

Figure S13. The fitting parameters for Single Sites Langmuir-Freundlich isotherms

model for DMOF-Cl at 298K (a) CH_4 (b) C_2H_6 (C) C_3H_8 .

Figure S14. The fitting parameters for Single Sites Langmuir-Freundlich isotherms

model for DMOF-Br at 298K (a) CH_4 (b) C_2H_6 (C) C_3H_8 .

	C_3H_8	C_2H_6	CH_4	C ₃ H ₈ /CH ₄	C_2H_6/CH_4	
Materials	uptake	uptake	uptake	selectivity	selectivity	Ref.
	mmol/g	mmol/g	mmol/g	(5/85)	(10/85)	
DMOF-Cl	6.25	5.07	0.63	130.9	12.5	This
						work
DMOF-F	4.78	3.56	0.42	80.8	9.5	This
						work
DMOF-Br	3.90	3.33	0.49	133.8	13.8	This
						work
DMOF	5.80	4.34	0.49	80.5	9.5	This
						work
MIL-101-Cr	3.35	1.59	0.49	84.3	22.5	1
MIL-101-Fe	3.29	1.25	0.45	24.9	15.4	1
MIL-101-Fe-NH ₂	3.32	1.35	0.46	42.5	11.6	1
ZUL-C1	2.72	2.95	-	158	28	2
ZUL-C2	2.52	2.82	-	741	82	2
Cu-MOF	5.98	3.22	-	203.6	9.3	3
MOF-303	4.74	4.96	0.86	5114	26	4
MIL-160	5.08	4.65	0.94	174	20	4
Ni(TMBDC)(DA	5.54	5.81	-	274	29	5
BCO) _{0.5}						

Table S1. Summary of CH_4 , C_2H_6 , and C_3H_8 adsorption capacities and C_3H_8/CH_4 and C_2H_6/CH_4 selectivities in various porous materials.

Zn-BPZ-SA	2.73	2.97	0.64	65.7	10.9	6
RT-MIL-100(Fe)	6.78	2.22	0.36	33.3	6.0	7
LIFM-ZZ-1	4.06	2.80	0.39	338	16	8
PAN-m1	3.42	2.53	0.63	222.8	23.1	9
PAN-m3	4.01	2.72	0.71	296.3	17.4	9
Cu-IPA	3.10	2.57	0.81	296	35	10

References

- L. Z. Qin, X. H. Xiong, S. H. Wang, L. Zhang, L. L. Meng, L. Yan, Y. N. Fan, T. A. Yan, D. H. Liu, Z. W. Wei and C. Y. Su, ACS Appl. Mater. Interfaces, 2022, 14, 45444-45450.
- 2. J. Zhou, T. Ke, F. Steinke, N. Stock, Z. Zhang, Z. Bao, X. He, Q. Ren and Q. Yang, *J. Am. Chem. Soc.*, 2022, **144**, 14322-14329.
- 3. S.-M. Wang and Q.-Y. Yang, *Green Chem. Eng.*, 2023, **4**, 81-87.
- 4. S. Xian, J. Peng, H. Pandey, T. Thonhauser, H. Wang and J. Li, *Engineering*, 2022, DOI: 10.1016/j.eng.2022.07.017.
- 5. Y. Wu, Z. Liu, J. Peng, X. Wang, X. Zhou and Z. Li, *ACS Appl. Mater. Interfaces*, 2020, **12**, 51499-51505.
- G.-D. Wang, R. Krishna, Y.-Z. Li, Y.-Y. Ma, L. Hou, Y.-Y. Wang and Z. Zhu, ACS Mater. Lett., 2023, 5, 1091-1099.
- 7. B. Yuan, X. Wang, X. Zhou, J. Xiao and Z. Li, *Chem. Eng. J.*, 2019, **355**, 679-686.
- 8. Z. Zeng, W. Wang, X. Xiong, N. Zhu, Y. Xiong, Z. Wei and J. J. Jiang, *Inorg. Chem.*, 2021, **60**, 8456-8460.
- 9. G. Li and Z. Wang, ACS Appl. Mater. Interfaces, 2020, **12**, 24488-24497.
- 10. D. Lin, S. Tu, L. Yu, Y. Yuan, Y. Wu, X. Zhou, Z. Li and Q. Xia, *Ind. Eng. Chem. Res.*, 2023, **62**, 5252-5261.