Supporting Information:

Co(II) complexes of tetraazamacrocycles appended with amide or hydroxypropyl groups as paraCEST agents

Jaclyn J. Raymond, ${ }^{\text {a }}$ Samira M. Abozeid, ${ }^{\text {af }}$ Gregory E. Sokolow, ${ }^{\text {a }}$ Christopher J. Bond, ${ }^{\text {a }}$ ConstanceE. Yap, ${ }^{\text {a }}$ Alexander Y. Nazarenko, ${ }^{\text {b }}$ Janet R. Morrow ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, Natural Sciences Complex, University at Buffalo, the State University of NewYork, Amherst NY 14260
${ }^{\text {b }}$ Chemistry Department, SUNY College at Buffalo, 1300 Elmwood Ave, Buffalo NY 14222\# Current address: Department of Chemistry, Faculty of Science, Mansoura University, El-GomhoriaStreet, 35516 Mansoura, Egypt
Contents
Materials and Methods 2
Synthesis of the Macrocyclic Ligands 4
Synthesis of the Co(II) Complexes 7
Data
${ }^{1} \mathrm{H}$ NMR Spectra of the Complexes 9
Chemical Exchange Saturation Transfer (CEST) Spectra 10
Exchange Rate Constants and Omega Plots 16
UV-vis Spectra 17
Complex Dissociation Studies 18
Crystallographic Data 20
References 30

Materials and Methods.

Materials. All reagents and solvents were reagent grade and used as obtained without further purification. 1,4,8,11-tetraazacyclotetradecane (CYCLAM, 98\%) and 1,4,7,10tetraazacyclododecane (CYCLEN, 98\%) were purchased from Strem Chemicals. 2bromoacetamide (98\%) was purchased from Acros organics. S-(-)-propylene oxide (>98\%) and sodium 3-(trimethylsilyl)-1-propanesulfonic acid (TMPS) were purchased from TCI America. Palladium on carbon was purchased from Sigma Aldrich. Cobalt nitrate hexahydrate $\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}\right)$ was purchased from Fisher Scientific. Cobalt chloride hexahydrate ($\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$) was purchased from Alfa Aesar. N, N-Diisopropylethylamine (DIPEA) (99\%) was purchased from BeanTown Chemical.

Crystal Information. For bis[(1,1',1",1'"-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(propan-2-ol))-cobalt(ii)] bis(chloride) tetrachloro-cobalt(ii) acetonitrile solvate hydrate (THP complex) (CCDC 2022193), (1,1'-(1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(propan-2-ol))-cobalt(ii) tetrachloro-cobalt(ii) (DHP complex) (CCDC 2022194), and (2,2'-\{4-(2-hydroxypropyl)-10-[2-(hydroxy)propyl]-1,4,7,10-tetraazacyclododecane-1,7-
diyl\}bis(acetamide))-cobalt(ii) tetrachloro-cobalt(ii) acetonitrile solvate monohydrate (HPAC complex) (CCDC 2022195), single-crystal X-ray data of the complexes were collected on a Bruker VENTURE Photon-100 CMOS diffractometer at 173 K with APEX 2 software suite. The absorption correction was applied using multiscan SADABS2014/5 (Bruker,2014/5) ${ }^{1}$ and the structures were solved by the direct methods using SHELXT, 85 and were refined using the SHELXL-2014 program package. Computer programs: SAINT v8.34A (Bruker, 2013), ${ }^{2}$ XT (Sheldrick, 2015), ${ }^{3}$ XL (Sheldrick, 2008), ${ }^{4}$ Olex2 (Dolomanov et al., 2009). ${ }^{5}$

For (4,11-bis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane)-cobalt(ii) dichloro hexahydrate (Co(II) complex of BABC) (CCDC 2262252), single-crystal X-ray diffraction was performed on a Bruker D8 VENTURE Photon-II diffractometer equipped a fixed-chi goniometer, a molybdenum X-ray source (Mo-K 0.7107 Å) with a graphite monochromator, and a Photon100 detector. Crystals were kept at temperature using an Oxford 700 series cryostat cooler. A single crystal was mounted on MiTeGen loop after being suspended in paraffin oil. Data was collected at 113.65 K in using a series of ϕ and ω scans. The structure was solved using Olex2, ${ }^{5}$ a graphical user interface. SHELXT, ${ }^{3}$ via Intrinsic Phasing was used to solve the structure, which was refined using ShelXL ${ }^{4}$ by using a least squares minimization.

NMR Spectroscopy. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a Varian 400 MHz or 500 MHz NMR or Bruker 500 NMR at $25^{\circ} \mathrm{C}$, unless otherwise stated. Spectra were processed on ACD lab software or with MestReNovax64.

CEST Experiments. CEST data were acquired on a Varian 400 MHz NMR spectrometer with a presaturation pulse power B_{1} of $22 \mu \mathrm{~T}$ applied for 2.4 s at $37^{\circ} \mathrm{C}$, unless otherwise stated. Solutions contained 10 mM complex, 20 mM MES or HEPES buffer, and 100 mM NaCl , and at pH values between 5.0 and 8.1. Data were acquired in 1 ppm increments and plotted as normalized
water signal intensity ($\mathrm{M}_{\mathrm{z}} / \mathrm{M}_{0} \%$) against frequency offset (ppm) to generate CEST spectra. Data was processed and plotted by using Microsoft Excel.

Standardization of the Complexes by ${ }^{\mathbf{1}} \mathbf{H}$ NMR. The purity (\%) of the complexes was determined by ${ }^{1} \mathrm{H}$ NMR using a Varian 400 MHz NMR spectrometer. The samples contained 2025 mM of the respective complex and an internal standard using $5-8 \mathrm{mM}$ sodium 3-trimethylsilyl-1-propanesulfonate (TMPS). The experiments were carried out at $25^{\circ} \mathrm{C}$ for all of the complexes, except for $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$, which was performed at $60^{\circ} \mathrm{C}$ to reduce peak width attributed to fluxional processes (see Figure S1). Using the average integration of paramagnetic peaks with respect to the internal standard, the percent purity was calculated using the below equation ${ }^{6}$:

$$
\text { wt } \% \mathrm{~A}=\underline{\text { area under A peak }} \times \frac{\text { MW of A }}{\text { area under IS peak }} \times \frac{\text { weight IS }}{\text { MW of IS }} \times \frac{\text { no. identical }{ }^{1} \mathrm{H}(\text { IS })}{\text { weight A }{ }^{1} \mathrm{H}(\mathrm{~A})} \times(\text { purity IS }) \%
$$

Evans Method for Determination of Magnetic Moments. Evans method was used to determine the effective magnetic moments ($\mu_{\text {eff }}$) for the complexes. ${ }^{7}$ Three independently measured values were averaged. In a typical experiment, a solution of 10 mM Co (II) complex in water, neutral $\mathrm{pH}(6-8)$, containing 5% tert-butanol (v / v) was placed in an NMR tube insert, while a reference solution of 5% tert-butanol (v / v) in deuterium oxide was contained in the NMR tube. The mass susceptibility χ_{g} was calculated using Eq. 1 below, where Δf is the shift in frequency (Hz); v_{0} is the operating frequency of NMR spectrometer (Hz); and m is the concentration of the substance $(\mathrm{g} / \mathrm{mL})$. The solvent correction (χ_{o}) was taken into account (Eq. 1). Multiplication of the mass susceptibility by the molar mass yields the molar susceptibility $\left(\chi_{M}\right)$. Then the paramagnetic molar susceptibility χ_{M}^{p} was calculated from subtracting the diamagnetic susceptibility contribution ($\chi_{\mathrm{M}}^{\text {dia }}$) (Eq. 2). ${ }^{8}$ This was used to calculate $\mu_{\text {eff }}$ (Eq. 3).

$$
\begin{aligned}
& \chi_{\mathrm{g}}=\frac{3 \Delta \mathrm{f}}{4 \pi v_{0} \mathrm{~m}}+\chi_{\mathrm{o}} \\
& \chi_{\mathrm{M}}^{\mathrm{p}}=\chi_{\mathrm{M}}-\chi_{\mathrm{M}}^{\text {dia }} \\
& \mu_{\mathrm{eff}}=2.83\left(\chi_{\mathrm{M}}^{\mathrm{p}} \mathrm{~T}\right)^{1 / 2}
\end{aligned} \quad \text { Eq. } 12 \text { Eq. } 3
$$

Methods for Monitoring Dissociation of Complexes. UV-vis spectroscopy was used to monitor complex dissociation in the presence of competing cations (excess Zn^{2+}), anions (13 mM $\mathrm{CO}_{3}{ }^{2-}, 0.2 \mathrm{mMPO}_{3}{ }^{2-}$, and 50 mM Cl), and under acidic conditions (2 M HCl or 0.1 M HCl). Samples were incubated at $37^{\circ} \mathrm{C}$ and absorbance measurements were recorded over at least 22 hours to monitor the absorption bands corresponding to $d-d$ transitions of the associated complex. For the transmetallation studies, the samples contained a 1:3 ratio of complex to Zn^{2+}. The samples with anions contained $14-20 \mathrm{mM}$ complex, $13 \mathrm{mM} \mathrm{K}_{2} \mathrm{CO}_{3}, 0.2 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 50 \mathrm{mM} \mathrm{NaCl}$, and 20 mM HEPES buffer at $\mathrm{pH}=7.1$ or 7.2 . For studies in acidic conditions, the absorption bands for $[\mathrm{Co}(\mathrm{THP})]^{2+}(20 \mathrm{mM})$ and $[\mathrm{Co}(\mathrm{BABC})]^{2+}(20 \mathrm{mM})$ were monitored in 2 M HCl or 0.1 M HCl , respectively.

Synthesis of the Macrocyclic Ligands.

Synthesis of 1,7-bis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (DHP). The precursor to the DHP ligand, 1,7-dibenzyl-1,4,7,10-tetraazacyclododecane (dibenzyl CYCLEN), was prepared by a previously reported method. ${ }^{9}$ Dibenzyl CYCLEN (2.65 mmol) was then dissolved in ethanol and to this solution was added N, N-Diisopropylethylamine (DIPEA) ($\sim 1 \mathrm{~mL}$) and S-(-)-propylene oxide ($10.6 \mathrm{mmol}, 4$ equiv.). The reaction mixture was allowed to stir at room temperature (RT) for 3 days, then the solvent was removed by rotary evaporation to yield a paleyellow oil that was subjected to hydrogenation with $10 \mathrm{~mol} \%$ of palladium on carbon (Pd / C) in methanol under H_{2} atmosphere in a Parr hydrogenator for three days. The resulting mixture was filtered through celite and concentrated to dryness to obtain DHP (see Scheme S1). The paleyellow, oily product was then dissolved in methanol and precipitated out as a white solid using ethyl ether. Yield: 79%. ESI-MS $m / z 291\left(\left[\mathrm{M}+2 \mathrm{H}^{+}\right]^{+}, 100 \%\right) . \delta \mathrm{H}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O} ; 25^{\circ} \mathrm{C}\right) 0.99(6 \mathrm{H}, \mathrm{d}$, pendant $\left.\mathrm{CH}_{3}\right), 2.28\left(4 \mathrm{H}, \mathrm{d}\right.$, pendant $\left.\mathrm{CH}_{2}\right), 2.51\left(4 \mathrm{H}, \mathrm{d}\right.$, ring $\left.\mathrm{CH}_{2}\right)$, 2.63-2.68 ($4 \mathrm{H}, \mathrm{m}$, ring $\mathrm{CH}_{2} \mathrm{NH}$), 3.64-3.69 ($2 \mathrm{H}, \mathrm{m}$, pendant CH). $\delta \mathrm{C}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O} ; 25^{\circ} \mathrm{C}\right) 20.2$ (pendant CH_{3}), 43.2 (ring $\mathrm{CH}_{2} \mathrm{NH}$), 51.4 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 61.6 (pendant CH_{2}), 65.5 (pendant CH).

Synthesis of 1,7-bis(2-hydroxypropyl)-4,10-bis(carbamoylmethyl)-1,4,7,10tetraazacyclododecane (HPAC). The precursor ligand DHP ($0.4273 \mathrm{~g}, 1.48 \mathrm{mmol}$) was dissolved in acetonitrile and stirred at $60^{\circ} \mathrm{C}$ with 2-bromoacetamide ($3.41 \mathrm{mmol}, 2.3$ equiv.). After 3 days, the reaction mixture was concentrated to dryness by rotary evaporation to obtain a pale-yellow, oily product that was used without further purification (Scheme S2 below). Yield: 84\%. ESI-MS $\mathrm{m} / \mathrm{z} 404\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}, 100 \%\right) . \delta \mathrm{H}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O} ; 25^{\circ} \mathrm{C}\right) 1.13\left(6 \mathrm{H}, \mathrm{d}\right.$, pendant $\left.\mathrm{CH}_{3}\right), 2.87-2.93(4 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 3.09-3.14 ($4 \mathrm{H}, \mathrm{m}$, ring CH_{2}), $3.18\left(4 \mathrm{H}\right.$, d, alcohol pendant CH_{2}), 3.43-3.51 ($2 \mathrm{H}, \mathrm{m}$, alcohol pendant CH), $3.80\left(4 \mathrm{H}, \mathrm{s}\right.$, amide pendant $\left.\mathrm{CH}_{2}\right) . \delta \mathrm{C}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O} ; 25^{\circ} \mathrm{C}\right) 20.2$ (pendant $\mathrm{CH}_{3} \mathrm{CHOH}$), 27.6 (pendant $\mathrm{CH}_{3} \mathrm{CHOH}$), 47.6 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 49.3 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 50.8 (pendant CH_{2}), 51.4 (pendant CH_{2}), 55.0 (amide pendant CH_{2}), 59.6 (pendant CH), 61.6 (pendant CH), 174.9 (amide pendant $\mathrm{C}=\mathrm{O}$).

Synthesis of 1,8-bis(benzyl)-4,11-(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (BABC). The precursor ligand dibenzyI CYCLAM (1,8-dibenzyl-1,4,8,11-tetraazacyclo-tetradecane) was prepared according to a previously established procedure. ${ }^{10}$ Then dibenzyl CYCLAM (0.5473 $\mathrm{g}, 1.44 \mathrm{mmol}$) was dissolved in a minimal amount of ethanol in a $50-\mathrm{mL}$ round-bottom flask, to which the base DIPEA ($\sim 1 \mathrm{~mL}$) and 2-bromoacetamide (4 equiv.) were also added. The reaction mixture was allowed to stir overnight at $70^{\circ} \mathrm{C}$, then the resulting white solid product was isolated by vacuum filtration and washed with cold ethanol. See Scheme S3 below. Yield: 61\%. ESI-MS $\mathrm{m} / \mathrm{z} 496\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}, 100 \%\right), 517\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}, 5\right) . \delta \mathrm{H}\left(400 \mathrm{MHz}\right.$; DMSO- $\left.\mathrm{d}_{6} ; 25^{\circ} \mathrm{C}\right) 1.60\left(4 \mathrm{H}, \mathrm{s}\right.$, ring $\left.\mathrm{CH}_{2}\right)$, 2.41-2.54 (16 H , m, ring $\mathrm{CH}_{2} \mathrm{~N}$), $2.75\left(4 \mathrm{H}, \mathrm{s}\right.$, amide pendant $\left.\mathrm{CH}_{2}\right)$, $3.49(4 \mathrm{H}$, s, benzyl pendant CH_{2}), $7.08\left(2 \mathrm{H}, \mathrm{s}\right.$, amide pendant $\left.\mathrm{NH}_{2}\right)$, 7.21-7.27 ($10 \mathrm{H}, \mathrm{m}$, benzyl groups).

Synthesis of 4,11-bis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (BAC). The previously prepared BABC ligand (0.44 mmol) was subject to hydrogenation with $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$
in methanol for 3 days, then filtered through celite and concentrated to dryness by rotary evaporation to yield bisamide cyclam (BAC) (Scheme S4 below). Yield: 88\%. ESI-MS m/z 158 $\left([\mathrm{M} / 2]^{2+}, 25 \%\right), 315\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}, 100\right), 337\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}, 16\right) . \delta \mathrm{H}\left(400 \mathrm{MHz} ; \mathrm{MeOD}-\mathrm{d}_{4} ; 25^{\circ} \mathrm{C}\right)$ 1.70-1.75 ($4 \mathrm{H}, \mathrm{m}$, macrocycle CH_{2}), 2.61-2.75 ($16 \mathrm{H}, \mathrm{m}$, macrocycle CH_{2}), $3.10\left(4 \mathrm{H}\right.$, s, pendant $\left.\mathrm{CH}_{2}\right) . \delta \mathrm{C}(400$ $\mathrm{MHz} ; \mathrm{MeOD}-\mathrm{d}_{4} ; 2{ }^{\circ} \mathrm{C}$) 21.5 (ring CH_{2}), 22.8 (ring CH_{2}), 43.7 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 48.8 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 49.4 (ring $\mathrm{CH}_{2} \mathrm{~N}$), 55.1 (pendant CH_{2}), 56.5, (pendant CH_{2}), 174.0 (pendant $\mathrm{C}=\mathrm{O}$), 177.1 (pendant $\mathrm{C}=\mathrm{O}$).

Synthesis of 1,8-bis(propan-2-ol)-4,11-(carbamoylmethyl)-1,4,8,11tetraazacyclotetradecane (HPAM). To an ethanolic solution of the resulting ligand BAC (0.58 mmol) was added S-(-)-propylene oxide (7 equiv.) and DIPEA. The reaction mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for 3 days (Scheme S4 below). Upon cooling, the product was observed as a solid white precipitate, which was then isolated by centrifugation and washed with cold ethanol. Yield: 83%. ESI-MS m/z $431\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}, 100 \%\right) . \delta \mathrm{H}\left(400 \mathrm{MHz}\right.$; DMSO- $\mathrm{d}_{6} ; 25^{\circ} \mathrm{C}$) 0.98-1.05 (6 H, m, alcohol pendant $\left.\mathrm{CH}_{3}\right)$, 1.49-1.56 ($4 \mathrm{H}, \mathrm{m}$, macrocycle CH_{2}), 2.16-2.26 ($4 \mathrm{H}, \mathrm{m}$, macrocycle $\mathrm{CH}_{2} \mathrm{~N}$), 2.79-2.97 $\left(4 \mathrm{H}, \mathrm{m}\right.$, alcohol pendant $\left.\mathrm{CH}_{2}\right), 3.29\left(4 \mathrm{H}, \mathrm{s}\right.$, amide pendant $\left.\mathrm{CH}_{2}\right), 3.63(2 \mathrm{H}, \mathrm{s}$, alcohol pendant $\mathrm{CH}), 4.40(2 \mathrm{H}, \mathrm{s}$, pendant OH$)$, $7.07\left(2 \mathrm{H}, \mathrm{s}\right.$, amide pendant $\left.\mathrm{NH}_{2}\right)$, $7.31(2 \mathrm{H}, \mathrm{s}$, amide pendant NH_{2}). $\delta \mathrm{C}\left(400 \mathrm{MHz}\right.$; DMSO- $\mathrm{d}_{6} ; 50^{\circ} \mathrm{C}$) 21.8 (alcohol pendant CH_{3}), 25.0 (macrocycle CH_{2}), 51.6, 51.9, 52.7, 53.0 (macrocycle $\mathrm{CH}_{2} \mathrm{~N}$), 59.2 (amide pendant CH_{2}), 62.6 (alcohol pendant CH_{2}), 64.4 (alcohol pendant CH), 173.5 (amide $\mathrm{C}=\mathrm{O}$).

Scheme S1. Synthetic scheme for the DHP ligand.

Scheme S2. Synthetic scheme for the HPAC ligand.

DIBENZYL CYCLAM

BABC

Scheme S3. Synthetic scheme for the BABC ligand.

Scheme S4. Synthetic scheme for the HPAM ligand and the precursor ligand BAC.

Synthesis of Cobalt(II) Complexes.

Synthesis of $[\mathrm{Co}(\mathrm{THP})]\left(\mathrm{NO}_{3}\right)_{2}$. The ligand THP $(0.3547 \mathrm{~g}, 0.877 \mathrm{mmol})$ was dissolved in ethanol in a $25-\mathrm{mL}$ round-bottom flask, to which an ethanolic solution of cobalt nitrate hexahydrate ($0.2564 \mathrm{~g}, 0.881 \mathrm{mmol}$) was then added (Scheme S5). The reaction mixture was allowed to stir overnight under Argon at RT. The volume was reduced to approximately 3 mL by rotary evaporation, then ethyl ether was added to the solution to induce precipitation of the complex. Upon centrifugation of the resulting mixture, the pink solid product was washed twice with ethyl ether. Yield: 86%. ESI-MS $m / z 232.00\left([\mathrm{M} / 2]^{2+}, 100 \%\right) 462.42\left(\left[\mathrm{M}-\mathrm{H}^{+}\right]^{+}, 80\right)$, where $\mathrm{M}=$ complex cation. Purity: 94% by ${ }^{1} \mathrm{H}$ NMR integration against sodium 3-(trimethylsilyl)-1propanesulfonic acid (TMPS) standard.

The complexes $[\mathrm{Co}(\mathrm{DHP})]\left(\mathrm{NO}_{3}\right)_{2}, \quad[\mathrm{Co}(\mathrm{HPAC})]\left(\mathrm{NO}_{3}\right)_{2}, \quad[\mathrm{Co}(\mathrm{BABC})]\left(\mathrm{NO}_{3}\right)_{2}, \quad$ and [Co(HPAM)] $\left(\mathrm{NO}_{3}\right)_{2}$ were prepared similarly as above. See Scheme S5.
[Co(DHP)]((%5Cleft.%5Cmathrm%7BNO%7D_%7B3%7D%5Cright)_{2}\) : Yield: 67%. ESI-MS $\mathrm{m} / \mathrm{z} 173.84\left([\mathrm{M} / 2]^{2+}, 58 \%\right), 346.32\left(\left[\mathrm{M}-\mathrm{H}^{+}\right]^{+}, 100\right)$, where M = complex cation. Purity: 91% by ${ }^{1} \mathrm{H}$ NMR integration against TMPS standard.
[$\mathrm{Co}(\mathrm{HPAC})]\left(\mathrm{NO}_{3}\right)_{2}$: Yield: 80%. ESI-MS $\mathrm{m} / \mathrm{z} 230.92$ ([M/2] $\left.{ }^{2+}, 100 \%\right), 460.44\left(\left[\mathrm{M}-\mathrm{H}^{+}\right]^{+}, 20\right)$, where $\mathrm{M}=$ complex cation. Purity: 90% by ${ }^{1} \mathrm{H}$ NMR integration against TMPS standard.
[Co(BABC)]((%5Cleft.%5Cmathrm%7BNO%7D_%7B3%7D%5Cright)_{2}\) : Yield: 71%. ESI-MS $m / z 276.84$ ([M/2] $\left.{ }^{2+}, 100 \%\right), 552.36\left(\left[\mathrm{M}-\mathrm{H}^{+}\right]^{+}, 5\right)$, where M = complex cation. Purity: 92% by ${ }^{1} \mathrm{H}$ NMR integration against TMPS standard.
[Co(HPAM)](NO $)_{2}$: Yield: 66%. ESI-MS m/z 244.60 ([M/2] $\left.]^{2+}, 100 \%\right), 488.24\left(\left[\mathrm{M}-\mathrm{H}^{+}\right]^{+}, 10\right)$, where $\mathrm{M}=$ complex cation. Purity: 87% by ${ }^{1} \mathrm{H}$ NMR integration against TMPS standard.

HPAC

BABC

$[\mathrm{Co}(\mathrm{BABC})]\left(\mathrm{NO}_{3}\right)_{2}$

HPAM

$[\mathrm{Co}(\mathrm{HPAM})]\left(\mathrm{NO}_{3}\right)_{2}$

Scheme S5. Synthetic schemes for $[\mathrm{Co}(\mathrm{THP})]\left(\mathrm{NO}_{3}\right)_{2},[\mathrm{Co}(\mathrm{DHP})]\left(\mathrm{NO}_{3}\right)_{2},[\mathrm{Co}(\mathrm{HPAC})]\left(\mathrm{NO}_{3}\right)_{2}$, $[\mathrm{Co}(\mathrm{BABC})]\left(\mathrm{NO}_{3}\right)_{2}$, and $[\mathrm{Co}(\mathrm{HPAM})]\left(\mathrm{NO}_{3}\right)_{2}$.

${ }^{1} \mathrm{H}$ NMR Spectra of the Complexes.

Figure S1. Stacked ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Co}(\mathrm{HPAC})]^{2+}(20 \mathrm{mM})$ in $\mathrm{D}_{2} \mathrm{O}$ at various temperatures, $\mathrm{T}=25,40$, 60 , and $80^{\circ} \mathrm{C}$ (bottom to top, respectively). The asterisks indicate artifacts from the spectrometer.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Co}(\mathrm{BABC})]^{2+}(20 \mathrm{mM})$ in DMSO (top) and after the addition of $\mathrm{D}_{2} \mathrm{O}$ (bottom). The asterisks indicate the proton resonances with reduced signal intensity upon addition of $\mathrm{D}_{2} \mathrm{O}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Co}(\mathrm{HPAM})]^{2+}(20 \mathrm{mM})$ in DMSO (top) and after the addition of $\mathrm{D}_{2} \mathrm{O}$ (bottom). The asterisks indicate the proton resonances with reduced signal intensity upon addition of $\mathrm{D}_{2} \mathrm{O}$.

CEST Spectra.

Figure S4. CEST spectrum for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=7.3$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. The sample contained 10 mM complex, 100 mM NaCl , and 20 mM HEPES buffer. $\mathrm{B}_{1}=22 \mu \mathrm{~T}$, applied for 2.4 seconds.

Figure S5. CEST spectrum for $[\mathrm{Co}(\mathrm{HPAM})]^{2+}$ at $\mathrm{pH}=7.4$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. The sample contained 10 mM complex, 100 mM NaCl , and 20 mM HEPES buffer. $\mathrm{B}_{1}=22 \mu \mathrm{~T}$, applied for 2.4 seconds.

Figure S6. Regional CEST spectra overlay at various saturation power values (12, 19, and $22 \mu \mathrm{~T}$) for $[\mathrm{Co}(\mathrm{BABC})]^{2+}(10 \mathrm{mM})$ at $\mathrm{pH}=7.3$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. The radiofrequency pulse was applied for 2.4 seconds.

Figure S7. \% CEST pH-dependence of the CEST peak at 42 ppm for $[\mathrm{Co}(\mathrm{THP})]^{2+}$ at $37^{\circ} \mathrm{C}$. Samples contained $10 \mathrm{mM}[\mathrm{Co}(\mathrm{THP})]^{2+}, 20 \mathrm{mM}$ MES buffer, and $100 \mathrm{mM} \mathrm{NaCl} . \mathrm{B}_{1}=24 \mu \mathrm{~T}$ applied for 2 s .

Figure S8. \% CEST pH-dependence of the CEST peak at 113 ppm for $[\mathrm{Co}(\mathrm{DHP})]^{2+}$ at $37{ }^{\circ} \mathrm{C}$. Samples contained $10 \mathrm{mM}[\mathrm{Co}(\mathrm{DHP})]^{2+}, 20 \mathrm{mM}$ buffer MES, and $100 \mathrm{mM} \mathrm{NaCl} . \mathrm{B}_{1}=24 \mu \mathrm{~T}$ applied for 2 s .

Figure S9. \% CEST pH-dependence of the CEST peak at 62 ppm for $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$ at $37{ }^{\circ} \mathrm{C}$. Samples contained $10 \mathrm{mM}[\mathrm{Co}(\mathrm{HPAC})]^{2+}, 20 \mathrm{mM}$ buffer MES, 100 mM NaCl . $\mathrm{B}_{1}=24 \mu \mathrm{~T}$ applied for 2 s.

Figure S10. CEST spectra overlay at various saturation power values (19, 21, 23, 25, 27, and $29 \mu \mathrm{~T}$) for $[C o(B A B C)]^{2+}$ at $\mathrm{pH}=7.4$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. The inset contains the respective peak at 3,5 , and $10 \mu \mathrm{~T}$. Samples contained 10 mM complex, 20 mM HEPES buffer, and 100 mM NaCl . The radiofrequency pulse was applied for 2.4 seconds.

Figure S11. CEST spectra overlay at various saturation power values (19, 21, 23, 25, 27, and $29 \mu \mathrm{~T}$) for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=7.2$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. Samples contained 10 mM complex, 20 mM HEPES buffer, and 100 mM NaCl . The radiofrequency pulse was applied for 2.4 seconds.

Figure S12. CEST spectra overlay at various saturation power values (19, 21, 23, 25, 27, and $29 \mu \mathrm{~T}$) for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=6.8$ and $\mathrm{T}=37{ }^{\circ} \mathrm{C}$. Samples contained 10 mM complex, 20 mM HEPES buffer, and 100 mM NaCl . The radiofrequency pulse was applied for 2.4 seconds.

Figure S13. CEST spectra overlay at various saturation power values (19, 21, 23, 25, 27, and $29 \mu \mathrm{~T}$) for $[\mathrm{Co}(\mathrm{THP})]^{2+}$ at $\mathrm{pH}=6.8$ and $\mathrm{T}=37{ }^{\circ} \mathrm{C}$. Samples contained 10 mM complex, 20 mM HEPES buffer, and 100 mM NaCl . The radiofrequency pulse was applied for 2.4 seconds.

Figure S14. CEST spectra overlay at various saturation power values (19, 21, 23, 25, 27, and $29 \mu \mathrm{~T}$) for $[\mathrm{Co}(\mathrm{THP})]^{2+}$ at $\mathrm{pH}=7.4$ and $\mathrm{T}=37{ }^{\circ} \mathrm{C}$. Samples contained 20 mM complex, 20 mM HEPES buffer, and 100 mM NaCl . The radiofrequency pulse was applied for 2.4 seconds.

Figure S15. \% CEST pH-dependence of the CEST peak(s) intensity for the respective complexes at $37{ }^{\circ} \mathrm{C}$. Samples contained 10 mM complex, 20 mM HEPES buffer, and 100 mM NaCl .

Exchange Rate Constants and Omega Plots.

Figure S16. Omega plot for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=7.4$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. $\mathrm{k}_{\text {ex }}$ was determined to be $4740 \mathrm{~s}^{-1} . \mathrm{B}_{1}$ was varied between 19 and $29 \mu \mathrm{~T}$.

Figure S17. Omega plot for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=7.2$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. $\mathrm{k}_{\text {ex }}$ was determined to be $1670 \mathrm{~s}^{-1} . \mathrm{B}_{1}$ was varied between 19 and 29μ T.

Figure S18. Omega plot for $[\mathrm{Co}(\mathrm{BABC})]^{2+}$ at $\mathrm{pH}=6.8$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. $\mathrm{k}_{\text {ex }}$ was determined to be $1070 \mathrm{~s}^{-1} . \mathrm{B}_{1}$ was varied between 19 and $29 \mu \mathrm{~T}$.

Figure S19. Omega plot for $[\mathrm{Co}(\mathrm{THP})]^{2+}$ at $\mathrm{pH}=6.8$ and $\mathrm{T}=37^{\circ} \mathrm{C}$. kex was determined to be $12600 \mathrm{~s}^{-1} . \mathrm{B}_{1}$ was varied between 19 and $29 \mu \mathrm{~T}$.

Table S1. Values for k_{ex} at $\mathrm{pH} 6.8,7.2$, or 7.4 and $\mathrm{T}=37^{\circ} \mathrm{C}$ for $[\mathrm{Co}(\mathrm{BABC})]^{2+}(10 \mathrm{mM})$ or $[\mathrm{Co}(\mathrm{THP})]^{2+}(10$ mM).

Complex	$\mathbf{k}_{\text {ex }}\left(\mathbf{s}^{-1}\right)$ at $\mathbf{p H} \mathbf{6 . 8}$	$\mathbf{k}_{\text {ex }}\left(\mathbf{s}^{-1}\right)$ at $\mathbf{p H}=\mathbf{7 . 2}$	$\mathbf{k}_{\text {ex }}\left(\mathbf{s}^{-1}\right)$ at $\mathbf{p H}=\mathbf{7 . 4}$
$[\operatorname{Co}(\mathrm{BABBC})]^{2+}$	1070	1670	4740
$[\operatorname{Co}(\mathrm{THP})]^{2+}$	12600	--	--

UV-vis Spectra.

Figure S20. Overlay of the absorbance spectra for the Co(II) complexes. Samples contained aqueous solutions of the respective complex ($14-20 \mathrm{mM}$).

Table S2. Molar Absorptivity (ε) Values for the CYCLEN-based Complexes at the Respective Wavelength (λ) or Wavenumber (v).

$[\mathrm{Co}(\mathrm{THP})]^{2+}$			[Co(DHP) $]^{2+}$			$[\mathrm{Co}(\mathrm{HPAC})]^{2+}$		
$\boldsymbol{\lambda}$ $(\mathbf{n m})$	\boldsymbol{v} $\left(\mathbf{c m}^{-1}\right)$	$\boldsymbol{\varepsilon}$ $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$	$\boldsymbol{\lambda}$ $(\mathbf{n m})$	\boldsymbol{v} $\left(\mathbf{c m}^{-1}\right)$	$\boldsymbol{\varepsilon}$ $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$	$\boldsymbol{\lambda}$ $(\mathbf{n m})$	\boldsymbol{v} $\left(\mathbf{c m}^{-1}\right)$	$\boldsymbol{\varepsilon}$ $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$
456	21930	13	470	21277	40	~ 467	21413	20.7
499	20040	10	494	20243	45	509	19646	26.1
557	17953	8	541	18484	37	--	--	--

Table S3. Molar Absorptivity (ε) Values for the CYCLAM-based Complexes at the Respective Wavelength (λ) or Wavenumber (v).

$[\mathbf{C o}(\mathrm{BABC})]^{2+}$			$[\mathrm{Co}(\mathrm{HPAM})]^{\mathbf{+}}$		
$\boldsymbol{\lambda}$ $(\mathbf{n m})$	\boldsymbol{v} $\left(\mathbf{c m}^{-1}\right)$	$\boldsymbol{\varepsilon}$ $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$	$\boldsymbol{\lambda}$ $(\mathbf{n m})$	\boldsymbol{v} $\left(\mathrm{cm}^{-1}\right)$	$\boldsymbol{\varepsilon}$ $\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)$
~ 478	20921	16.2	479	20877	13.6
506	19763	18.4	510	19608	16.2
549	18215	16.2	550	18182	15.5

Complex Dissociation Studies.
Zn^{2+} ion displacement

Figure S21. Absorbance spectra overlay for $20 \mathrm{mM}[\mathrm{Co}(\mathrm{THP})]^{2+}(\mathrm{A}), 14 \mathrm{mM}\left[\mathrm{Co}(\mathrm{DHP}]^{2+}\right.$ (B), 20 mM $[\mathrm{Co}(\mathrm{HPAC})]^{2+}(\mathrm{C}), 20 \mathrm{mM}[\mathrm{Co}(\mathrm{BABC})]^{2+}(\mathrm{D})$, and $17 \mathrm{mM}[\mathrm{Co}(\mathrm{HPAM})]^{2+}(\mathrm{E})$ in the presence of excess $\mathrm{Zn}^{2+}(1: 3$ or 1:4.3 complex to zinc ratio). Samples contained a ratio of $1: 3$ complex to zinc at $\mathrm{T}=37.0^{\circ} \mathrm{C}$.

Dissociation in the presence of acid or anions.

Figure S22. Absorbance spectra overlay $20 \mathrm{mM}[\operatorname{Co}(\mathrm{THP})]^{2+}(\mathrm{A}), 14 \mathrm{mM}\left[\operatorname{Co}(\mathrm{DHP}]^{2+}(\mathrm{B}), 20 \mathrm{mM}\right.$ $[\mathrm{Co}(\mathrm{HPAC})]^{2+}(\mathrm{C}), 20 \mathrm{mM}[\mathrm{Co}(\mathrm{BABC})]^{2+}(\mathrm{D})$, and $17 \mathrm{mM}[\mathrm{Co}(\mathrm{HPAM})]^{2+}(\mathrm{E})$ in the presence of biologicallyrelevant anions. Samples contained $0.2 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 13 \mathrm{mM} \mathrm{K}{ }_{2} \mathrm{CO}_{3}, 50 \mathrm{mM} \mathrm{NaCl}$, and 20 mM HEPES buffer at $\mathrm{pH}=7.1$ or 7.2 and $\mathrm{T}=37.0^{\circ} \mathrm{C}$.

Figure S23. Absorbance spectra overlay for $20 \mathrm{mM}[\mathrm{Co}(\mathrm{THP})]^{2+}(\mathrm{A})$ in the presence of 2 M HCl and 20 mM $[\mathrm{Co}(\mathrm{BABC})]^{2+}(\mathrm{B})$ in 0.1 M HCl at $\mathrm{T}=37^{\circ} \mathrm{C}$.

Crystallographic Data.

Table S4. Crystal data, data collection and structure refinement details for the Co(II) complexes.

Compound	HPAC Complex CCDC 2022195	DHP Complex CCDC 2022194	THP Complex CCDC 2022193	BABC Complex CCDC 2262252
Chemical formula	$\begin{aligned} & 2\left(\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{CoN}_{6} \mathrm{O}_{4}\right) \cdot 2(\mathrm{Cl} \\ & 4 \mathrm{Co}) \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right) \end{aligned}$	$\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{CoN}_{4} \mathrm{O}_{2} \cdot \mathrm{Cl}_{4} \mathrm{Co}$	$\begin{aligned} & 2\left(\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{CoN}_{4} \mathrm{O}_{4}\right) \cdot 2(\mathrm{Cl}) \\ & \cdot \mathrm{Cl}_{4} \mathrm{Co} \cdot 1.69\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{C}_{2} \mathrm{H}_{3} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{CoN}_{6} \mathrm{O}_{2}\right] \mathrm{Cl}_{2} .} \\ & 6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
M_{r}	1442.54	548.09	1270.39	732.60
Crystal system, space group	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$	Orthorhombic, $P 2{ }_{1} 2_{1} 2_{1}$	Triclinic, $P 1$	Monoclinic, $P 2{ }_{1} / n$
Temperature (K)	173	173	173	114
$a, b, c(\AA)$	$\begin{aligned} & 16.8813(8), 18.4751 \\ & (9), 20.4087(10) \end{aligned}$	$\begin{aligned} & 10.8000(9), 13.7390 \\ & (14), 15.4056(15) \end{aligned}$	$\begin{aligned} & 9.3476(7), 10.4026(7), \\ & 15.7740(11) \end{aligned}$	$\begin{aligned} & 10.9214(7), \\ & 22.7525(13), \\ & 14.3494(9) \end{aligned}$
$\left.\alpha, \beta, \gamma{ }^{(}\right)$	90, 90, 90	90, 90, 90	$\begin{aligned} & 76.878(2), 78.518(2), \\ & 89.593(2) \end{aligned}$	90, 96.926(2), 90
$V\left(\AA^{3}\right)$	6365.1 (5)	2285.9 (4)	1462.74 (18)	3539.7(4)
Z	4	4	1	4
Radiation type	Mo K α	Mo K α	Mo K α	Mo $K \alpha(\lambda=0.71073)$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.42	1.94	1.17	0.689
Crystal size (mm)	$0.59 \times 0.26 \times 0.15$	$0.50 \times 0.17 \times 0.16$	$0.30 \times 0.24 \times 0.07$	$0.175 \times 0.15 \times 0.1$
Data collection				
Diffractometer	Bruker PHOTON-100 CMOS	Bruker PHOTON-100 CMOS	Bruker PHOTON-100 CMOS	Bruker PHOTON-II
Absorption correction	Multi-scan SADABS2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0675 before and 0.0624 after correction. The Ratio of minimum to maximum transmission is 0.6566 .	Multi-scan SADABS2016/2 (Bruker, 2016/2) was used for absorption correction. wR2(int) was 0.0854 before and 0.0676 after correction. The Ratio of minimum to maximum transmission is 0.7803.	Multi-scan SADABS2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0556 before and 0.0494 after correction. The Ratio of minimum to maximum transmission is 0.8090 .	Multi-scan SADABS-2016/2 (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0644 before and 0.0508 after correction. The Ratio of minimum to maximum transmission is 0.9044.
$T_{\text {min }}, T_{\text {max }}$	0.546, 0.831	0.582, 0.746	0.769, 0.950	0.886, 0.933
No. of measured, independent and observed [$I>$ $2 \sigma(I)$] reflections	447993, 23270, 19437	42350, 4662, 3809	68318, 10954, 8409	85756, 10903

$R_{\text {int }}$	0.047	0.085	0.070	0.0352
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.760	0.625	0.611	0.710
Refinement				
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.035, 0.088, 1.03	0.031, 0.057, 1.07	0.035, 0.072, 1.04	0.0334, 0.0815, 1.057
No. of reflections	23270	4662	10954	85756
No. of parameters	816	243	704	438
No. of restraints	504	2	10	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms were treated using the riding model.
$\left.\Delta\rangle_{\text {max }}, \Delta\right\rangle_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.69, -0.54	0.68, -0.46	0.43, -0.60	0.79, -0.77
Absolute structure	Flack x determined using 8004 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259) ${ }^{11}$.	Flack x determined using 1453 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249259) ${ }^{11}$.	Flack x determined using 3558 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259 ${ }^{11}$.	N/A
Absolute structure parameter	-0.005 (2)	-0.036 (8)	-0.001 (5)	N/A

Computer programs: APEX2 (Bruker, 2013), SAINT v8.34A (Bruker, 2013), SAINT V8.38A (Bruker, 2016), ShelXT (Sheldrick, 2015) ${ }^{3}$, SHELXL (Sheldrick, 2015) ${ }^{4}$, Olex2 (Dolomanov et al., 2009) ${ }^{5}$.

Table S5. Selected bond lengths (\AA) for the complex cation $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$

Co1-O1	$2.153(2)$	Co1-N2	$2.317(2)$
Co1-O2	$2.186(2)$	Co1-N3	$2.271(3)$
Co1-O3	$2.164(2)$	Co1-N4	$2.328(3)$
Co1-N1	$2.237(3)$		

Table S6. Selected bond lengths (\AA) for the complex cation $[\mathrm{Co}(\mathrm{DHP})]^{2+}$

Co1-O1	$2.107(3)$	Co1-N2	$2.121(3)$
Co1-O2	$2.140(3)$	Co1-N3	$2.240(3)$
Co1-N1	$2.236(3)$	Co1-N4	$2.125(3)$

Table S7. Selected bond lengths (\AA) for the complex cation $[\mathrm{Co}(\mathrm{THP})]^{2+}$

$\mathrm{Co1}-\mathrm{O} 1$	$2.171(4)$	$\mathrm{Co} 2-\mathrm{O} 5$	$2.223(4)$
$\mathrm{Co1}-\mathrm{O} 2$	$2.292(4)$	$\mathrm{Co} 2-\mathrm{O} 6$	$2.228(4)$

Co1-O3	$2.196(4)$	Co2-O7	$2.196(4)$
Co1-N1	$2.225(4)$	Co2-N5	$2.204(4)$
Co1-N2	$2.340(4)$	Co2-N6	$2.355(4)$
Co1-N3	$2.223(4)$	Co2-N7	$2.221(4)$
Co1-N4	$2.318(4)$	Co2-N8	$2.305(4)$

Table S8. Selected bond lengths (Å) for the complex cation $[\mathrm{Co}(\mathrm{BABC})]^{2+}$

Co1-O1	$2.095(1)$	Co1-N3	$2.286(2)$
Co1-O2	$2.096(1)$	Co1-N1	$2.244(1)$
Co1-N4	$2.226(1)$		
Co1-N2	$2.210(1)$		

Table S9. Selected bond angles (${ }^{\circ}$) for the complex cation $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$

Atom 1	Atom 2	Atom 3	Angle (${ }^{\circ}$)
O1	Co1	O2	$80.41(8)$
O1	Co1	O3	$80.16(8)$
O1	Co1	N1	$156.42(9)$
O1	Co1	N2	$123.83(9)$
O1	Co1	N3	$73.73(9)$
O1	Co1	N4	$92.06(9)$
O2	Co1	O3	$78.49(8)$
O2	Co1	N1	$100.18(9)$
O2	Co1	N2	$72.97(9)$
O2	Co1	N3	$117.06(9)$
O2	Co1	N4	$160.00(9)$
O3	Co1	N1	$76.91(9)$
O3	Co1	N2	$137.57(9)$
O3	Co1	N3	$146.09(9)$
O3	Co1	N4	$81.99(9)$
N1	Co1	N2	$78.00(9)$

N1	Co1	N3	$124.71(9)$
N1	Co1	N4	$79.4(1)$
N2	Co1	N3	$76.01(9)$
N2	Co1	N4	$125.76(9)$
N3	Co1	N4	$77.78(9)$

Table S10. Selected bond angles $\left(^{\circ}\right.$) for the complex cation $[\mathrm{Co}(\mathrm{DHP})]^{2+}$

Atom 1	Atom 2	Atom 3	Angle (${ }^{\circ}$)
O1	Co1	O2	$77.6(1)$
O1	Co1	N1	$76.8(1)$
O1	Co1	N2	$119.0(1)$
O1	Co1	N3	$149.8(1)$
O1	Co1	N4	$102.4(1)$
O2	Co1	N1	$150.3(1)$
O2	Co1	N2	$99.5(1)$
O2	Co1	N3	$76.0(1)$
O2	Co1	N4	$121.4(1)$
N1	Co1	N2	$80.2(1)$
N1	Co1	N3	$132.1(1)$
N1	Co1	N4	$78.9(1)$
N2	Co1	N3	$79.9(1)$
N2	Co1	N4	$127.2(1)$
N3	Co1	N4	$79.4(1)$

Table S11. Selected bond angles $\left({ }^{\circ}\right)$ for the complex cation $[\mathrm{Co}(\mathrm{THP})]^{2+}$

Atom 1	Atom 2	Atom 3	Angle (${ }^{\circ}$)
O1	Co1	O2	$77.4(1)$
O1	Co1	O3	$80.9(1)$
O1	Co1	N1	$74.0(1)$

O1	Co1	N2	$123.7(1)$
O1	Co1	N3	$155.9(1)$
O1	Co1	N4	$93.9(1)$
O2	Co1	O3	$74.9(1)$
O2	Co1	N1	$111.9(1)$
O2	Co1	N2	$70.3(1)$
O2	Co1	N3	$103.9(2)$
O2	Co1	N4	$163.5(1)$
O3	Co1	N1	$151.4(1)$
O3	Co1	N2	$129.7(1)$
O3	Co1	N3	$76.4(1)$
O3	Co1	N4	$90.0(1)$
N1	Co1	N2	$76.9(2)$
N1	Co1	N3	$125.4(2)$
N1	Co1	N4	$78.5(2)$
N2	Co1	N3	$78.1(2)$
N2	Co1	N4	$125.7(2)$
N3	Co1	N4	$78.2(2)$

Table S12. Selected bond angles $\left({ }^{\circ}\right)$ for the complex cation $[\mathrm{Co}(\mathrm{BABC})]^{2+}$

Atom 1	Atom 2	Atom 3	Angle (${ }^{\circ}$)
O1	Co1	O2	$77.07(4)$
O1	Co1	N4	$89.65(4)$
O1	Co1	N2	$106.36(4)$
O1	Co1	N3	$153.69(4)$
O1	Co1	N1	$77.76(4)$
O2	Co1	N4	$99.50(4)$
O2	Co1	N2	$95.99(4)$

O2	Co1	N3	77.13(4)
O2	Co1	N1	$154.77(4)$
N4	Co1	N2	$159.88(4)$
N4	Co1	N3	$89.56(4)$
N4	Co1	N1	$82.04(4)$
N2	Co1	N3	$81.43(4)$
N2	Co1	N1	$89.40(4)$
N3	Co1	N1	$128.10(4)$

Additional Description of Structures.

Figure S24. Two macrocyclic cations for $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$: For disordered cation (b) only one of components is shown. Thermal ellipsoids are drawn at 50\% probability.

The coordination polyhedron of Co 1 (and Co 2) atom in the Co (II) complex of HPAC is a prismatoid with seven vertices with three oxygen atoms $\mathrm{O} 1, \mathrm{O} 2$, and O 3 of pendant groups located in a upper trigonal face and four nitrogen atoms of 1,4,7,10-tetrazadodecane macrocycle form a rhombic lower face. The lower face is nearly planar, deviations of four nitrogen atoms from the mean plane are below $0.01 \AA$. Both faces can be considered parallel: the angle between two planes is $3.5(1)^{\circ}$; the distance between two faces is around $2.51 \AA$. Co1 atom is located $1.052(1) \AA$ above mean plane of nitrogen atoms and $1.458 \AA$ below the upper plane. Alternatively, the coordination polyhedron of Co atoms can be considered as a truncated rhombohedron with one vertex removed (Figure S22).

Figure S25. Coordination polyhedron of Co1 atom in the complex cation of $[\mathrm{Co}(\mathrm{HPAC})]^{2+}$. Interatomic distances are shown in Å.

The structure of the Co(II) complex of DHP has the macrocyclic complex cation (Figure S23) and the tetrahedral tetrachloridocobaltate(II) anion. Coordination polyhedron of Co1 atom is a distorted wedge with six vertices with two oxygen atoms O 1 and O 2 of pendant groups located in cis- position above the plane of four nitrogen atoms.

Figure S26. Numbering scheme for the Co(II) complex with DHP with thermal ellipsoids drawn at 50% probability.

Figure S27. Coordination polyhedron of Co 1 atom in the complex cation of $[\mathrm{Co}(\mathrm{DHP})]^{2+}$. Interatomic distances are shown in Å.

Figure S28. Molecular structure and numbering scheme of two macrocyclic cations for the Co(II) complex of THP. Thermal ellipsoids are drawn at 50\% probability.

Asymmetric unit consists of two crystallographically independent macrocyclic complex cations of Co(THP), two chloride ions, a disordered tetrahedral tetrachloridocobaltate(II) anion, two water molecules, and an acetonitrile molecule. Both macrocyclic cations are similar (Figure S25).

The coordination polyhedra of Co 1 and Co 2 atoms are prismatoids with seven vertices with three oxygen atoms 01,02 , and O 3 (and $\mathrm{O} 5,06$ and 07) of pendant groups located in a upper trigonal face and four nitrogen atoms of 1,4,7,10-tetrazadodecane macrocycle form rhombic lower faces. The lower face is nearly planar; deviations of four nitrogen atoms from the mean plane are 0.02 \AA (Co1) and $0.026 \AA$ (Co2). Both triangular and rhombic faces can be considered parallel: the angle between two planes is $1.4(1)^{\circ}$ for Co1 complex and 1.2° for Co2. Co1 atom is located
1.039(2) Å above mean plane of nitrogen atoms and 1.519(2) Å below the upper plane; Co2 atom is located $1.041(2) \AA$ above mean plane of nitrogen atoms and $1.525(2) \AA$ A below the upper plane. Alternatively, the coordination polyhedra of Co atoms can be considered as truncated rhombohedra with one vertex removed. In both twelve-membered macrocycles, four C-N bonds have trans- conformation and four are gauche; all C-C bonds are gauche. The overall sequence is $(T G G)_{4}$. Another notation for this conformation is [3333] (Boyens \& Dobson, 1987) ${ }^{12}$. See Figure S26.

Figure S29. Coordination polyhedra of macrocyclic complex cations for $[\mathrm{Co}(\mathrm{THP})]^{2+}$. Interatomic distances in Å.

Figure S30. Prismatoid and distorted wedge geometries.

References.

(1) SADABS v2014/5; Bruker AXS Inc.: Madison, Wisconsin, USA., 2014.
(2) SAINT v8.34A; Bruker AXS Inc.: Madison, Wisconsin, USA, 2013.
(3) Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr Section A 2015, 71 (1), 3-8.
(4) Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr Section C 2015, 71 (1), 3-8.
(5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009, 42 (2), 339-341. DOI: doi:10.1107/S0021889808042726.
(6) McGarvey, D. R. C., William R. NMR METHOD TO DETERMINE NIST-TRACEABLE QUANTITATIVE WEIGHT PERCENTAGE PURITY OF NEAT AGENT T; Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21020-5424, 2018.
(7) Evans, D. F. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J Chem Soc 1959, 2003-2005, 10.1039/JR9590002003.
(8) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's Constants. J Chem Ed 2008, 85 (4), 532.
(9) Rodríguez-Rodríguez, A.; Regueiro-Figueroa, M.; Esteban-Gómez, D.; Rodríguez-Blas, T.; Patinec, V.;

Tripier, R.; Tircsó, G.; Carniato, F.; Botta, M.; Platas-Iglesias, C. Definition of the Labile Capping Bond Effect in Lanthanide Complexes. Chem Eur J 2017, 23 (5), 1110-1117.
(10) Royal, G.; Dahaoui-Gindrey, V.; Dahaoui, S.; Tabard, A.; Guilard, R.; Pullumbi, P.; Lecomte, C. New Synthesis of trans-Disubstituted Cyclam Macrocycles - Elucidation of the Disubstitution Mechanism on the Basis of X-ray Data and Molecular Modeling. Eur J Org Chem 1998, 1998 (9), 1971-1975.
(11) Parsons, S.; Flack, H. D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B Struct Sci Cryst Eng Mater 2013, 69 (Pt 3), 249-259.
(12) Hancock, R. D.; Dobson, S. M.; Boeyens, J. C. A. Metal ion size selectivity of 1-Thia-4, 7diazacyclononane (9 -aneN:S), and other tridentate macrocycles. A study by molecular mechanics calculation, structure determination, and formation constant determination of complexes of 9-aneN 2 S . Inorg Chim Acta 1987, 133 (2), 221-231.

