Supporting Information

An up-conversion Ba₃In(PO₄)₃: Er³⁺/Yb³⁺ phosphor enabling multi-mode temperature measurements and wide-gamut 'temperature mapping'

Zonghao Lei¹, Ronghui Liu¹, Lijie Sun¹, Xiaoxiong Wang¹, Chen Hu¹, Yanfei Zou¹, Xiaowei Yang¹, Shikun Su¹, Bing Teng^{1, 2, 3*}, Hui Xu⁴, Degao Zhong^{1, 2, 3*}

¹College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
²National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao 266071, China
³ Weihai Innovation Research Institute of Qingdao University, Weihai 264200, China
⁴ CRYSTECH Inc., Qingdao, 266107, China

*Corresponding author. Email: <u>zhdg2008@126.com</u> (Degao Zhong), <u>5108tb@163.com</u> (Bing Teng)

Element	Line type	wt%	wt% Sigma	Atomic percentage
0	K	23.89	0.21	63.60
Р	Κ	11.42	0.11	15.70
In	L	12.02	0.15	4.46
Ba	L	51.19	0.26	15.87
Er	L	0.27	0.19	0.07
Yb	L	1.21	0.22	0.30

Table S1. Atomic mass and quantity percentage of Ba₃In(PO₄)₃: 0.02Er³⁺/0.05Yb³⁺

Table S2. Atomic coordinates of Ba₃In(PO₄)₃: 0.02Er³⁺/0.05Yb³⁺

Atom	х	У	Z
Bal	0.06050	0.06050	0.06050
P1	0.37500	0.00000	0.25000
01	0.29628	0.92880	0.34419
02	0.29471	0.02760	0.37926
In1	0.08210	0.08210	0.08210
Er1	0.08194	0.08194	0.08194
Yb1	0.08222	0.08222	0.08222

Yb ³⁺ Concentration	523nm	545nm	658nm
5	1.5340	1.3836	1.1096
20	1.7952	1.4686	1.0835
40	1.7463	1.3309	1.0058
60	1.7218	1.2280	1.1114
80	1.8698	1.3452	1.0302
98	1.9948	1.4574	1.0962

Table S3. Dependence of emission intensity on pumping density

Fig. S1. EDS analysis of $Ba_3In(PO_4)_3$: $0.02Er^{3+}/0.05Yb^{3+}$ single phase powders.

Fig. S2. Double logarithmic relationship of 523nm, 545nm and 658nm UC intensities versus power density of $Ba_3In(PO_4)_3$: Er^{3+}/Yb^{3+} with different doping concentrations.

Fig. S3. Fluorescence decay curve of 523nm, 545nm and 658nm of $Ba_3In(PO_4)_3$: Er^{3+}/Yb^{3+} with different doping concentrations.

Fig. S4. Comparison of FIR and S_r values of samples with different Yb^{3+} doping concentrations.