Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Figure S9. XRD patterns of DUT-52 and Cu²⁺, Eu³⁺/DUT-52-COOH composite and Cr₂O₇²⁻, Eu³⁺/DUT-52-COOH.

Figure S10. Spectral overlap between absorption spectra of the ligands of Eu³⁺/DUT-52-COOH

and $Cr_2O_7^{2-}$ ions in water.

Sensor	Detection Limits	Ref.
CDs@Eu-DPA	26.3 nM	44
$Zn_3(\mu_3-Hbptc)_2(\mu_2-4,4'-bpy)_2(H_2O)_4]_n \cdot 2nH_2O$	32.4 nM	45
Eu-DATA/BDC	0.15 μΜ	25
$[Zn_{1.5}(dttz)(Hdpa)]_n$	1.66 µM	46
Tb-MOFs	10 µM	47
TMU-16	62 μM	32
Eu ³⁺ /DUT-52-COOH	3.43 µM	This work

Table S2. Performance comparison between other sensors based on MOFs for Cu²⁺ ions

Table S3. Performance comparison between other sensors based on MOFs for $Cr_2O_7^{2-i}$ ons

Sensor	Detection Limits or quenching constants	Ref.
[Eu ₂ (HICA)(BTEC)(H ₂ O) ₂] _n	$Ksv = 1.141 \times 10^4 M^{-1}$	40
$[Tb_2(HICA)-(BTEC)(H_2O)_2]\cdot 2.5H_2O\}_n$	Ksv= $8.23 \times 10^3 \text{ M}^{-1}$	48
R@D3	Ksv= $4.7 \times 10^4 \text{M}^{-1}$	29
$[Zr_6O_4(OH)_4L_4(H_2O)_2(HCOO)_4] \cdot 9DMF \cdot 12H_2O$	Ksv=4.99×10 ⁴ M ⁻¹	49
$[Tb_{10}(DBA)_6(OH)_4(H_2O)_5] \cdot (H_3O)_4$	$LOD = 10^{-9} M$	50
[Eu ₇ (mtb) ₅ (H ₂ O) ₁₆]·NO ₃ 8DMA·18H ₂ O	LOD=5.73 nM	51
Dyes⊂MOF-801	LOD=0.03 mM	52
Eu ³⁺ /DUT-52-COOH	LOD=25.7 nM	This work