Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting information

for

Cascade of Magnetic Phase Transitions and 1/3-Magnetization Plateau in Selenite-Selenate Co₃(SeO₃)(SeO₄)(OH)₂ with Layers of a Kagomé-like Co²⁺ Ion Arrangement: Importance of Identifying a Correct Spin Lattice

A.F. Murtazoev,^{*a,b*} P.S. Berdonosov,^{*a,b*} K.A. Lyssenko,^{*a,c*} V.A. Dolgikh,^{*a*} M.Y. Geidorf,^{*a,b*} O.S. Volkova,^{*a,b*} H.-J. Koo,^{*d*} M.-H. Whangbo,^{*d,e*} A.N. Vasiliev^{*b*}

 ^a Lomonosov Moscow State University, Moscow 119991, Russia
^b National University of Science and Technology "MISiS", Moscow 119049, Russia
^c Plekhanov Russian University of Economics, Moscow 117997, Russia
^d Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
^e Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

S1. Supplementary figures

Fig. S1. The kagomé-like arrangement of the Cu^{2+} ions in volborthite $Cu_3V_2O_7(OH)_2 \cdot 2H_2O$. The three different orientations of the CuO_4 square planes possessing the x^2-y^2 magnetic orbitals are emphasized to show that the correct spin lattice is not a kagomé spin lattice, but superposed three-leg spin ladders. Volborthite is perfectly described by a spin-half antiferromagnetic uniform Heisenberg chain model.

Fig. S2. Comparison of Powder XRD for hydrothermally prepared sample of $Co_3(SeO_3)(SeO_4)(OH)_2$ (upper panel) and simulated from single crystal data experiment at Cu K_{α 1} radiation (lower panel).

Fig. S3. Asymmetric unit for Co₃(SeO₃)(SeO₄)(OH)₂.

Fig. S4. Hysteresis loops in Co₃(SeO₃)(SeO₄)(OH)₂ at various temperatures.

FM

AF1

AF2

AF4

AF5 (E₁)

AF6 (GS)

AF7

AF8

AF9 (E2)

Fig. S5. 10 ordered spin states of Co₃(SeO₃)(SeO₄)(OH)₂ employed for the energy-mapping analysis. In the text, the AF6, AF5, AF9 and AF3 arrangements are referred to as the GS, E_1 , E_2 and E_3 states, respectively.

S2. Supplementary tables

Table S1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for Co₃(SeO₃)(SeO₄)(OH)₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
Co(1)	4507(2)	2500	2867(2)	12(1)	
Co(2)	5000	5000	0	11(1)	
Co(3)	5000	5000	5000	10(1)	
Se(1)	2603(1)	2500	813(1)	12(1)	
Se(2)	4145(1)	7500	2438(1)	11(1)	
Se(2')	5601(8)	7500	2516(6)	11(1)	
O(1)	1156(7)	2500	534(9)	15(2)	
O(2)	3164(6)	381(9)	223(6)	14(2)	
O(3)	2766(9)	2500	2261(8)	16(2)	
O(4)	4805(6)	5511(10)	3189(6)	15(2)	
O(5)	4943(6)	7500	1181(7)	11(2)	
O(6)	5289(9)	2500	1223(8)	14(2)	
O(7)	6021(8)	7500	5347(8)	10(2)	
Se(1')	2448(7)	2500	-146(11)	12(1)	
O(3')	2223(19)	2500	-1587(10)	16(2)	

Table S2. Values of
$$n_i$$
 in the energy expressions,
FM and AF_i (i = 1 – 9) of Co₃(SeO₃)(SeO₄)(OH)₂

$$E_{spin} = -\sum_{i=1}^{9} n_i J_i S^2$$
, for the ordered spin states

	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8	J_9
FM	-8	-8	-16	-16	-8	-16	-16	-16	-16
AF1	-8	-8	-16	16	-8	16	16	-16	-16
AF2	-8	-8	0	0	8	-16	0	-16	-16
AF3	-8	-8	-16	16	-8	16	-16	16	16
AF4	8	8	0	0	-8	-16	0	16	-16
AF5	8	8	0	0	-8	16	0	-16	16
AF6	8	8	0	0	8	16	0	-16	16
AF7	8	8	0	0	8	-16	0	-16	16
AF8	-8	8	0	-16	-8	0	0	0	0
AF9	-8	8	0	16	-8	0	0	0	0

Table S3. Relative energies (in meV/FU) of the 10 ordered spin states obtained from DFT+U calculations

	$U_{\rm eff} = 3 {\rm eV}$	$U_{\rm eff} = 4 {\rm eV}$
FM	34.76	26.14
AF1	9.50	7.17
AF2	23.85	18.33
AF3 (E3)	4.25	3.07
AF4	18.20	13.99
AF5 (E1)	2.84	2.14
AF6 (GS)	0	0
AF7	8.16	6.24
AF8	18.74	14.00
AF9 (E2)	3.40	2.61

In the text, the AF6, AF5, AF9 and AF3 arrangements are referred to as the GS, E_1 , E_2 and E_3 states, respectively.

S3. Computational details

We carried out DFT calculations for the (a, 2b, c) supercell of $Co_3(SeO_3)(SeO_4)(OH)_2$ using the frozen core projector augmented plane wave (PAW) [28, 29] encoded in the Vienna ab Initio Simulation Packages (VASP) [30] and the PBE potential [31] for the exchange-correlation functional. The electron correlation associated with the 3*d* states of Co was taken into consideration by DFT+*U* calculations with an effective on-site repulsion $U_{eff} = U - J = 3$ and 4 eV [32] All our DFT+*U* calculations used the plane wave cutoff energy of 450 eV, a set of (4x4x4) *k*points, and the threshold of 10⁻⁶ eV for self-consistent-field energy convergence.

In terms of the spin Hamiltonian defined in Equation 1 of the text, the total spin exchange energies E per (a, 2b, c) supercell for each of the 10 ordered spin states can be written as

$$E_{\rm spin} = -\sum_{i} n_i J_i S^2$$

where S = 3/2, and i = 1 - 9. The values of n_i found for the 10 ordered spin states are listed in **Table S2**. We then carry out spin-polarized DFT+U calculations for the 10 ordered spin states to obtain their relative energies listed in **Table S3**. By mapping these relative energies on to the corresponding energies expressed in terms of the total spin exchange energies, we obtain the values of $J_1 - J_9$ summarized in **Table 3**.