Supporting Information

A Simplified and Facile Preparation Method for [Ca₂₄Al₂₈O₆₄]⁴⁺(e⁻

)₄ Electride

Xiangyu Zhang, ^{a,b,c} Yunlei Chen, ^{b,c} Yongfang Sun, ^{b,c} Fei Wang, ^b Xiao-Dong

Wen*b,c and Tian-Nan Ye*a

^aFrontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China.
^cNational Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China.

E-mail: <u>ytn@sjtu.edu.cn</u> (Tian-Nan Ye)

Figure S1. The binary alloy phase diagram of Ca and Si.^[1]

Figure S2. Powder XRD patterns of C12A7:O^{2–+}CA and CaH₂ at different calcination temperature. All obtained powders were washed with a solution of 0.1 M NH_4Cl in methanol.

Figure S3. Powder XRD patterns of before and after washing of C12A7:O^{2–+}CA and

 CaH_2 at 950 °C.

Figure S4. TPD profile of C12A7:e⁻ powder.

Figure S5. The optimized structure models of $C12A7:O^{2-}$ and $C12A7:e^{-}$.

Figure S6. Isosurface of electron localization function (ELF) with the value of 0.1 for $C12A7:O^{2-}$ (a) and $C12A7:e^{-}$ (b). ELF map in the (001) plane of $C12A7:O^{2-}$ (c) and $C12A7:e^{-}$ (d). The O (cage) and interstitial electrons are respectically encircled by black circles.

Figure S7. Thermodynamics analysis of the CaH_2 decomposition. It is indicated that CaH_2 decomposition is intensively exothermic process.

REFERENCES

[1] P. Manfrinetti, M. L. Fornasini, A. Palenzona. Intermetallics, 2000, 8, 223.