Supplemental material

Mechanisms of Point Defect Formation and Ionic Conduction in Divalent Cation-Doped Lanthanum Oxybromide: First-Principles and Experimental Study

Kazuki Shitara ${ }^{1,2}$, Akihide Kuwabara ${ }^{1}$, Naoyoshi Nunotani ${ }^{3}$, Muhammad Radzi Iqbal Bin Misran ${ }^{3}$, Miki Inada ${ }^{4}$, Tomoki Uchiyama ${ }^{5}$, Yoshiharu Uchimoto ${ }^{5}$, Nobuhito Imanaka ${ }^{3}$
${ }^{1}$ Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Nagoya, Aichi 456-8587, Japan
${ }^{2}$ Joint and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
${ }^{3}$ Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
${ }^{4}$ Center of Advanced Instrumental Analysis, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
${ }^{5}$ Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, Kyoto 606-8317, Japan

Figure S1 A schematic phase diagram of the La-O-Br ternary system. Grey area means the assumed equilibrium condition in this study.

Figure S2 Calculated density of states (DOS) and band structure of pure LaOBr .

Figure S 3 Calculated COHP of M^{2+}-doped LaOBr models. It is noted that negative COHP was plotted. $\mathrm{Br} 1, \mathrm{Br} 2$, and Br 3 correspond to Br ions bonded to substitutional $M(M: \mathrm{Mg}, \mathrm{Ca}, \mathrm{Zn}, \mathrm{Sr})$ ions in Fig. 3(b-e).

We applied crystal orbital Hamilton population (COHP) analysis ${ }^{1}$ to the M^{2+}-doped models to confirm these interactions. Figure 4 shows the calculated negative COHP (-COHP) values. The Fermi level was set to 0 eV . Positive and negative -COHP values indicate bonding and antibonding orbitals, respectively. Bonding states between substitutional M and Br at the Br 3 site were found to be approximately -4 eV for the doped Mg and Zn , suggesting strong bonding interactions between these atoms. Less -COHP values were observed for Ca and Sr .

1 S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, Journal of Computational Chemistry, 2016, 37, 1030-1035.

Figure S4 Results of the Rietveld refinements for $\mathrm{La}_{0.9} M_{0.1} \mathrm{OBr}_{0.9}(M: \mathrm{Sr}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Zn})$ and LaOBr .

Table S1 Structural parameters determined by Rietveld refinements for $\mathrm{La}_{0.9} M_{0.1} \mathrm{OBr}_{0.9}(M: \mathrm{Sr}, \mathrm{Ca}$,
$\mathrm{Mg}, \mathrm{Zn})$ and LaOBr .

Sample	Atom	Wyckoff position	g	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{La}_{0.9} \mathrm{Sr}_{0.1} \mathrm{OBr}_{0.9}$	La	2 c	0.9	0	1/2	0.1623(1)	0.50(1)
	Sr	2 c	0.1	0	1/2	$=z(\mathrm{La})$	$=B(\mathrm{La})$
	O	$2 a$	1	0	0	0	$1.02(11)$
	Br	2 c	0.9	0	1/2	0.6365(1)	0.40(2)
Space group: $P 4 / n m m, a=4.1581(1) \AA, c=7.3823(1) \AA, V=127.637(2) \AA^{3}, R_{\text {wp }}=9.05 \%, S=1.52$							
$\mathrm{La}_{0.9} \mathrm{Ca}_{0.1} \mathrm{OBr}_{0.9}$	La	2 c	0.9	0	1/2	0.1619(1)	0.40(1)
	Ca	2 c	0.1	0	1/2	$=z(\mathrm{La})$	$=B(\mathrm{La})$
	O	$2 a$	1	0	0	0	$1.28(10)$
	Br	2 c	0.9	0	1/2	0.6364(1)	0.66(2)
Space group: $P 4 / n m m, a=4.1557(1) \AA$, $c=7.3879(1) \AA$ 退, $V=127.589(2) \AA^{3}, R_{\mathrm{wp}}=8.83 \%, S=1.45$							
$\mathrm{La}_{0.9} \mathrm{Mg}_{0.1} \mathrm{OBr}_{0.9}$	La	2 c	0.9	0	1/2	0.1617(1)	0.42(1)
	Mg	$2 c$	0.1	0	1/2	$=z(\mathrm{La})$	$=B(\mathrm{La})$
	O	$2 a$	1	0	0	0	1.25(9)
	Br	2 c	0.9	0	1/2	0.6363(1)	0.71(2)
Space group: $P 4 / \mathrm{nmm}, a=4.1553(1) \AA, c=7.3855(1) \AA, V=127.520(1) \AA^{3}, R_{\text {wp }}=9.26 \%, S=1.58$							
$\mathrm{La}_{0.9} \mathrm{Zn}_{0.1} \mathrm{OBr}_{0.9}$	La	2 c	0.9	0	1/2	0.1615(1)	0.44(1)
	Zn	$2 c$	0.1	0	$1 / 2$	$=z(\mathrm{La})$	$=B(\mathrm{La})$
	O	$2 a$	1	0	0	0	1.23(11)
	Br	2 c	0.9	0	1/2	0.6368(1)	0.51(2)
Space group: $P 4 / n m m, a=4.1551(1) \AA, c=7.3866(1) \AA, V=127.529(1) \AA^{3}, R_{\text {wp }}=10.10 \%, S=1.64$							
LaOBr	La	$2 c$	1	0	1/2	0.1618(1)	0.31(1)
	O	$2 a$	1	0	0	0	0.42(9)
	Br	$2 c$	1	0	1/2	0.6366(1)	0.73(2)
Space group: $P 4 / n m m, a=4.1534(1) \AA, c=7.3979(1) \AA, V=127.619(2) \AA^{3}, \quad R_{\mathrm{wp}}=9.48 \%, S=1.59$							

Table S2 Average bond lengths of $\mathrm{La} / M-\mathrm{Br} 1, \mathrm{La} / M-\mathrm{Br} 2, \mathrm{La} / M-\mathrm{Br} 3$, and $\mathrm{La} / M-\mathrm{O}$, where the Br 1 , $\mathrm{Br} 2, \mathrm{Br} 3$, and O sites are corresponding to those in Fig. 3(b-e). The ratio of $\mathrm{La} / M-\mathrm{Br} 3$ to $\mathrm{La} / M-\mathrm{Br} 1$ and that of $\mathrm{La} / M-\mathrm{O}$ to $\mathrm{La} / M-\mathrm{Br} 2$ were estimated from these average lengths.

Sample	$\mathrm{La} / M-\mathrm{Br} 1$ (\AA)	$\mathrm{La} / M-\mathrm{Br} 2$ (\AA)	$\mathrm{La} / M-\mathrm{Br} 3$ (\AA)	$\mathrm{La} / M-\mathrm{O}$ (\AA)	$\mathrm{La} / \mathrm{M}-\mathrm{Br} 3$	$\mathrm{La} / \mathrm{M}-\mathrm{O}$ $\mathrm{La} / \mathrm{M}-\mathrm{Br} 1$
$\mathrm{La}_{0.9} \mathrm{Sr}_{0.1} \mathrm{OBr}_{0.9}$	$3.5007(1)$	$3.2944(4)$	$3.8816(10)$	$2.3994(3)$	$1.1088(4)$	$0.7283(1)$
$\mathrm{La}_{0.9} \mathrm{Ca}_{0.1} \mathrm{OBr}_{0.9}$	$3.5057(9)$	$3.2946(4)$	$3.8822(9)$	$2.3976(2)$	$1.1074(4)$	$0.7277(1)$
$\mathrm{La}_{0.9} \mathrm{Mg}_{0.1} \mathrm{OBr}_{0.9}$	$3.5062(8)$	$3.2951(4)$	$3.8793(8)$	$2.3962(2)$	$1.1064(3)$	$0.7272(1)$
$\mathrm{La}_{0.9} \mathrm{Zn}_{0.1} \mathrm{OBr}_{0.9}$	$3.5112(9)$	$3.2943(4)$	$3.8754(9)$	$2.3956(2)$	$1.1037(4)$	$0.7272(1)$
LaOBr	$3.5127(9)$	$3.2939(4)$	$3.8852(9)$	$2.3969(2)$	$1.1060(4)$	$0.7277(1)$

