Reaction of human telomeric unit TTAGGG and a photoactivatable Pt(IV) anticancer prodrug

Jiafan Lin,^{1,2} Jishuai Zhang,^{1,2} Ziqi Ma,¹ Xiaoqin Wu,¹ Fuyi Wang,^{2,3} Yao Zhao,^{2,*} Kui Wu,^{1,*} Yi Liu^{1,4*}

 Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials;
School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China

2. Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.

R. China

3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

4. School of Chemical and Environmental Engineering, Wuhan Polytechnic University,

Wuhan 430023, P. R. China

Electronic Supplementary Information

Contents

Table S1. MS data under positive-ion mode of the reaction between Pt(IV) complex 1 and ODN I.

Table S2. MS/MS fragment ions of the mono-platinated $[I + 1']^{2+}$

Table S3. MS/MS fragment ions of the mono-platinated $[I + 1'']^{2+}$

Table S4. MS/MS fragment ions of the di-platinated $[I + 1'_2]^{2+}$

Figure S1. The isotopic models and corresponding mass spectrum under positive-ion mode.

Table S1. MS data under positive-ion mode for the reaction between Pt(IV) complex 1 and ODN I at a molar ratio of 1/I = 1.0 after irradiated under blue light for 1 h (Charges for Pt moiety and the loss of protons from I for balancing the charges of the ions are

Ions	Formula	m/z observed(calculated)
[A] ⁺	C ₅ H ₅ N ₅	136.066(136.062)
$[G]^{+}$	C ₅ H ₅ N ₅ O	152.061(152.057)
$[w_1]^+$	$C_{10}H_{14}N_5O_7P$	348.073(348.070)
$[Pt(N)(py)_2]^+$	$C_{10}H_9N_3Pt$	367.048(367.052)
$[Pt(N)(OH)(py)_2]^+$	$C_{10}H_{10}N_3OPt$	384.058(384.055)
$[Pt^{III}(OH)_2(py)_2]^+$	$C_{10}H_{11}N_2O_2Pt$	387.058(387.054)
$[Pt^{III}(N_3)(OH)(py)_2]^+$	$C_{10}H_{10}N_5OPt$	412.065(412.0.61)
${[Pt(N_3)(OH)(py)_2] + 2H_2O}^+$	$C_{10}H_{13}N_5O_3Pt$	447.077(477.074)
$\{1' + MeCN + Na\}^+$	$C_{12}H_{10}N_6PtNa$	457.056(457.059)
$[T]^{+}$	$C_{15}H_{20}N_2O_{12}P_2$	483.059(483.056)
$[G_4/G_5^d]^+$	$C_{15}H_{19}N_5O_{11}P_2$	508.064(508.063)
$[a_2]^+$	$C_{20}H_{25}N_4O_{11}P$	529.135(529.133)
[I] ³⁺	$C_{60}H_{75}N_{24}O_{35}P_5$	616.460(616.458)
$[T_2:G_5^d]^{2+}$	$C_{45}H_{56}N_{17}O_{29}P_5$	727.613(727.613)
$\{I + 1''\}^{3+}(4)$	$C_{70}H_{83}N_{26}O_{35}P_5Pt$	733.802(733.806)
${[I - C + H_2O] + 1''}^{3+} (Gh)^e (9)$	$C_{69}H_{85}N_{26}O_{36}P_5Pt$	735.807(735.798)
${I + [Pt(N)(py)_2]}^{3+}$ (5)	$C_{70}H_{84}N_{27}O_{35}P_5Pt$	738.804(738.807)
${[I + 2O] + 1''}^{3+}$ (Sp or (8-OH-		
G) ₂) ^e (10a or 10b)	$C_{70}H_{83}N_{26}O_{37}P_5Pt$	/44.403(/44.400)
${[I - C + 4H + 3O)] + 1''}^{3+} (Gh +$		
RedSp or DGh + 2FapyG) ^e (11a or	$C_{69}H_{87}N_{26}O_{38}P_5Pt$	747.144(747.142)
11b)		
$\{I + 1'\}^{3+}$ (6)	$C_{70}H_{84}N_{29}O_{35}P_5Pt$	748.141(748.142)
$\{[I + 2(H_2O)] + 1'' + Na\}^{3+}$		752 141(752 127)
(2FapyG) ^e (12 + Na)	$C_{70}H_{86}N_{26}O_{37}P_5PtINa$	/55.141(/55.15/)
$[T_2:A_3]^+$	$C_{25}H_{32}N_7O_{17}P_3$	796.117(796.114)
$[\mathbf{I}-\mathbf{G}^{b}-\mathbf{H}_{2}\mathbf{O}]^{2+}$	$C_{55}H_{68}N_{19}O_{33}P_5$	839.651(839.653)
$[\mathbf{I} - \mathbf{G}^{b}]^{2+}$	$C_{55}H_{70}N_{19}O_{34}P_5$	848.660(848.658)
$\{I + 1' + 1''\}^{3+}(7)$	$C_{80}H_{92}N_{31}O_{35}P_5Pt_2$	865.153(865.153)
$\{\mathbf{I} + \mathbf{1'}_2\}^{3+}$ (8)	$C_{80}H_{93}N_{34}O_{35}P_5Pt_2$	879.489(879.492)
[I] ²⁺	$C_{60}H_{75}N_{24}O_{35}P_5$	924.182(924.183)
$\{\mathbf{I} + \mathbf{Na}\}^{2+}$	$C_{60}H_{74}N_{24}O_{35}P_5Na$	935.167(935.174)
$\{\mathbf{I} + \mathbf{K}\}^{2+}$	$C_{60}H_{74}N_{24}O_{35}P_5K$	943.157(943.161)
$\{[I - G^b + H_2O] + 1' - py\}^{2+}$ (FapyG) ^e (14)	$C_{60}H_{76}N_{23}O_{35}P_5Pt$	1015.663(1015.669)

omitted for clarity). 1	$= [Pt(N_3)_2(OH)_2(Py)_2],$	$1' = [Pt(N_3)(py)_2]^+, 1$	$'' = [Pt(py)_2]^{2+}.$
-------------------------	------------------------------	-----------------------------	-------------------------

$[a_4 - G_4]^+$	$C_{35}H_{44}N_9O_{21}P_3$	1020.192(1020.194)
$\{[\mathbf{I} - \mathbf{G}^{b}] + \mathbf{1''}\}^{2+} (3 - \mathbf{G})$	$C_{65}H_{78}N_{21}O_{34}P_5Pt$	1024.671(1024.676)
$\{[\mathbf{I} - \mathbf{G}^{b} - \mathbf{H}_{2}\mathbf{O}] + \mathbf{1'}\}^{2+}(2 - \mathbf{G} - \mathbf{C})\}$	CHNODH	1027 170(1027 170)
H ₂ O)	C6511771N24O33F5Ft	1037.179(1037.179)
$\{[I - G^b] + 1'\}^{2+} (2 - G)$	$C_{65}H_{79}N_{24}O_{34}P_5Pt$	1046.182(1046.185)
$\{[I - A^b] + 1'\}^{2+} (2 - A)$	$C_{65}H_{79}N_{24}O_{35}P_5Pt$	1054.180(1054.182)
$\{[\mathbf{I} + \mathbf{O}] + \mathbf{1'} - \mathbf{py} \}^{2+} (8-\mathbf{OH-G})^{e}$ (15)	$C_{65}H_{79}N_{28}O_{36}P_5Pt$	1090.185(1090.186)
{I + 1"} ²⁺ (3)	C ₇₀ H ₈₃ N ₂₆ O ₃₅ P ₅ Pt	1100.196(1100.201)
$\{[\mathbf{I} - \mathbf{C} + \mathbf{H}_2\mathbf{O}] + \mathbf{1''}\}^{2+} (\mathbf{Gh})^e (16)$	$C_{69}H_{85}N_{26}O_{36}P_5Pt$	1103.201(1103.193)
${I + [Pt(N)(py)_2]}^{2+}$ (13)	$C_{70}H_{84}N_{27}O_{35}P_5Pt$	1107.695(1107.706)
${\bf I + 1'' + Na}^{2+} ({\bf 3 + Na})$	$C_{70}H_{82}N_{26}O_{35}P_5PtNa$	1111.188(1111.192)
$\{[I + 2O] + 1''\}^{2+}$ ((8-OH-G) ₂ or	C H N O DDt	1116 101/1116 106)
Sp) ^e (17a or 17b)	$C_{70}H_{83}N_{26}O_{37}P_5Pt$	1110.191(1110.190)
${[I - C + 4H + 3O] + 1''}^{2+} (Gh +$	CHNOPP	1120 204(1120 200)
RedSp or DGh + 2FapyG) ^e (18)	C6911871V26O381 51 t	1120.204(1120.207)
$\{\mathbf{I} + \mathbf{1'}\}^{2+}(2)$	$C_{70}H_{84}N_{29}O_{35}P_5Pt$	1121.706(1121.709)
$\{[I + 2(H_2O)] + 1'' + Na\}^{3+}$	C70H86N26O27P5PtNa	1129 202(1129 202)
$(2FapyG)^{e}(19 + Na)$	C /011801 (20 C 5/1 51 C1 (C	112).202(112).202)
${I + 1'' + Na}^{2+} (2 + Na)$	$C_{70}H_{83}N_{29}O_{35}P_5PtNa$	1132.694(1132.700)
$\{[I - C + 2H + 3O] + 1'' + K\}^{2+}$		
$(Gh + Sp \text{ or } DGh + RedSp)^{e} (20 +$	C ₆₉ H ₈₄ N ₂₆ O ₃₈ P ₅ PtK	1138.202(1138.179)
K)		
$\{[I + O] + 1' + Na\}^{2+} (8-OH-G)^{e}$	C70H83N29O36P5PtNa	1140.684(1140.698)
(21 + Na)	,0 05 27 50 5	· · · · · · · · · · · · · · · · · · ·
$\{[I - C + O] + 1' + K\}^{2+} (DGh)^{e} (22$	C ₆₅ H ₈₃ N ₂₉ O ₃₆ P ₅ PtK	1142.698(1142.685)
+ K)		
$\{[\mathbf{I} + 2(\mathbf{H}_2\mathbf{O})] + \mathbf{1'} + \mathbf{N}a\}^{2+}$	C ₇₀ H ₈₇ N ₂₉ O ₃₇ P ₅ PtNa	1150.729(1150.711)
$(2FapyG)^{e}(23 + Na)$		1101 000/1101 002
$\{[\mathbf{I}]_2 - \mathbf{G}^{b}\}^{3+}$	$C_{115}H_{145}N_{43}O_{69}P_{10}$	1181.889(1181.893)
$\{[\mathbf{I}]_2 = \mathbf{A}^0\}^{3+1}$	$C_{115}H_{145}N_{43}O_{70}P_{10}$	118/.218(118/.224)
$[1]_{2}^{2}$	$C_{120}H_{150}N_{48}O_{70}P_{10}$	1232.237(1232.243)
$\{[\mathbf{I}]_2 + [\mathbf{N}a]^2$	$C_{120}\Pi_{149}\Pi_{48}O_{70}P_{10}\Pi_{48}$	1239.339(1239.370)
$\{[1]_2 + K\}^2$ (I + 1/ + 1/) 2+ (24)	$C_{120}\Pi_{149}\Pi_{48}O_{70}\Gamma_{10}K$	1244.007(1244.094)
$\{1 + 1 + 1\}^{-} (24)$ $(1 + 1/2)^{2+} (25)$	$C_{80}I_{92}I_{31}O_{35}F_{5}F_{12}$	1297.210(1297.220) 1218.727(1218.724)
$\{\mathbf{I} + \mathbf{I}_{2}\}$ (23) $\{[\mathbf{I} + 2\mathbf{H} + 5\mathbf{O}] + \mathbf{1'} + \mathbf{1''}\}^{2+}$	$C_{80}H_{93}N_{34}O_{35}F_{5}F_{2}$	1318.727(1318.734) 1338.218(1338.221)
$\{[\mathbf{I} - \mathbf{C} + 2\mathbf{H} + 3\mathbf{O}] + \mathbf{I} + \mathbf{I}'\}$	08011941 031 0401 51 02	1556.210(1556.221)
$\{[1 \ 0 \ 211 \ 30] + 1 \ 1 \ 200]$	$C_{79}H_{92}N_{31}O_{38}P_5Pt_2Na_2$	1338.218(1338.208)
$\{[\mathbf{I}]_2 + \mathbf{1'}\}^{3+}$ (26)	$C_{130}H_{159}N_{53}O_{70}P_{10}Pt$	1363.586(1363.593)
[] ₃ ⁴⁺	$C_{180}H_{225}N_{72}O_{105}P_{15}$	1386.262 (1386.272)
$\{[\mathbf{I}]_3 + \mathbf{1''}\}^{4+}$ (27)	$C_{190}H_{233}N_{74}O_{105}P_{15}Pt$	1474.015(1474.031)
$\{[\mathbf{I}]_3 + \mathbf{1'}\}^{4+}$ (28)	C ₁₉₀ H ₂₃₄ N ₇₇ O ₁₀₅ P ₁₅ Pt	1484.768(1484.785)
${[I]_2 + 1' + 1'' + K + 2Na}^{3+}$	$C_{140}H_{164}N_{55}O_{70}P_{10}Pt_2Na_2$	1508.251(1508.244)

K

$\{[I]_2 - C + H_2O + 1' + 1'' + 2K\}^{3+}$ (Gh) ^e	$C_{139}H_{167}N_{55}O_{71}P_{10}Pt_2K_2$	1508.251(1508.245)
$\{[I]_3 + O + 1' + 1'' + 3Na\}^{3+}$ (8-OH-G) ^e	$C_{140}H_{164}N_{55}O_{71}P_{10}Pt_2Na_3\\$	1508.251(1508.251)
$\{[a_6-G_6{}^c]-G^b\}^+$	$C_{50}H_{63}N_{14}O_{32}P_5$	1527.241(1527.249)
$\{[I]_3 + 1' + 1''\}^{4+}$ (29)	$C_{200}H_{242}N_{79}O_{105}P_{15}Pt_2$	1572.775(1572.794)
$\{[I]_3 + 1'_2\}^{4+}$ (30)	$C_{200}H_{243}N_{82}O_{105}P_{15}Pt_2$	1583.531(1583.548)
$\{[\mathbf{I}]_3 + \mathbf{1'} + \mathbf{1''} + \mathbf{K} + 2\mathbf{N}\mathbf{a}\}^{4+}$	$\begin{array}{l} C_{200}H_{239}N_{79}O_{105}P_{15}Pt_2Na_2\\ K \end{array}$	1593.269(1593.273)
$\{[\mathbf{I}]_3 - C + H_2O + \mathbf{1'} + \mathbf{1''} + 2K\}^{4+}$ (Gh) ^e	$C_{199}H_{242}N_{79}O_{106}P_{15}Pt_2K_2$	1593.269(1593.274)
$\{[I]_3 + O + 1' + 1'' + 3Na\}^{4+}$ (8-OH-G) ^e	$C_{200}H_{239}N_{79}O_{106}P_{15}Pt_2Na_3\\$	1593.269(1593.279)
$[d_5]^+$	$C_{50}H_{64}N_{19}O_{32}P_5$	1598.260(1598.273)
$[a_6 - G_6^c]^+$	$C_{55}H_{68}N_{19}O_{33}P_5$	1678.284(1678.299)
$\{[I]_2 - G^b - H_2O\}^{2+}$	$C_{115}H_{143}N_{43}O_{68}P_{10}$	1763.315(1763.330)
$\{[I]_2 - G^b\}^{2+}$	$C_{115}H_{145}N_{43}O_{69}P_{10}$	1772.314(1772.335)
$\{[I]_2 - A^b\}^{2+}$	$C_{115}H_{145}N_{43}O_{70}P_{10}$	1780.316(1780.333)
$\{[I]_3 - G^b\}^{3+}$	$C_{175}H_{220}N_{67}O_{104}P_{15}$	1797.659(1797.677)
$\{[I]_3 - A^b\}^{3+}$	$C_{175}H_{220}N_{67}O_{105}P_{15}$	1802.994(1803.009)
$[\mathbf{I}]^+$	$C_{60}H_{75}N_{24}O_{35}P_5$	1847.347(1847.356)
$\{[I]_2 + 2(MeCN) + Na + K\}^{2+}$	$C_{122}H_{151}N_{49}O_{70}P_{10}NaK$	1898.401(1898.342)
$\{[\mathbf{I}]_4 + \mathbf{1'}\}^{4+} (31)$	$C_{250}H_{309}N_{101}O_{140}P_{20}Pt$	1946.606(1946.623)
$\{[\mathbf{I}]_3 + \mathbf{1''}\}^{3+}$ (32)	$C_{190}H_{233}N_{74}O_{105}P_{15}Pt$	1965.021(1965.038)
{[I] ₃ + 1'} ³⁺ (33)	$C_{190}H_{234}N_{77}O_{105}P_{15}Pt$	1979.356(1979.377)

^bA and G represent the neutral loss of an adenine and a guanine base, respectively.

 $^{c}T_{n}$, A_{n} and G_{n} represent the loss of a thymine, an adenine and a guanine base, respectively, followed by elimination of a H₂O molecule to form a furan ring, n indicates the position of the base in strand I.

^dThe internal fragment $B_m:B_n$ results from fragmentation at both the a- and w-sites, having a phosphate group at their 5'-terminus and a furan ring at the 3'-terminus.

^eThe most likely oxidation adduct is indicated in brackets.

Table S2. Fragment ions observed by MS/MS analysis in positive-ion mode of monoplatinated I ($[I + 1']^{2+}$, *m/z* 1121.706) produced by the reaction of complex 1 with ODN I at 310 K after irradiation under blue light for 1 h. (Charges for Pt moiety and the loss of protons from I for balancing the charges of the ions are omitted for clarity). 1' = $[Pt(N_3)(py)_2]^+$.

Fragments	Formula(neutral)	<i>m/z</i> ^a
		observed(calculated)
$[w_1]^+$	$C_{10}H_{14}N_5O_7P$	348.080(348.070)
$\{w_1 + 1'\}^+$	$C_{20}H_{23}N_{10}O_7PPt$	742.133(742.117)
$[y_2 - G_6^c]^+$	$C_{15}H_{18}N_5O_8P$	428.048(428.094)
$[w_2]^+$	$C_{20}H_{26}N_{10}O_{13}P_2$	677.137(677.125)
$\{w_2 + 1'\}^+$	$C_{30}H_{35}N_{15}O_{13}P_2Pt$	1071.182(1071.172)
$\{w_3 + 1' - N_3\}^{2+}$	$C_{40}H_{46}N_{17}O_{19}P_3Pt$	679.121(679.109)
$\{w_3 + 1'\}^{2+}$	$C_{40}H_{47}N_{20}O_{19}P_3Pt$	700.627(700.617)
$\{w_3 + 1'\}^+$	$C_{40}H_{47}N_{20}O_{19}P_3Pt$	1400.251(1400.226)
$\{x_5 + 1' - py\}^{2+}$	$C_{55}H_{67}N_{26}O_{30}P_5Pt$	962.162(962.151)
$\{\mathbf{w}_5 + \mathbf{1'}\}^{2+}$	$C_{60}H_{72}N_{27}O_{31}P_5Pt$	1009.670(1009.669)
$\{z_5 + 1' - N_3 + MeCN + K\}^{2+}$	$C_{62}H_{70}N_{25}O_{27}P_4PtK$	978.661(978.664)
$\{[a_2 - T_2{}^c] - H_2O\}^+$	$C_{15}H_{17}N_2O_8P$	385.090(385.078)
$[a_2]^+$	$C_{20}H_{25}N_4O_{11}P$	529.141(529.133)
$[a_3 - A_3^c]^+$	$C_{25}H_{32}N_4O_{16}P_2$	707.148(707.133)
$\{[a_3 - A_3^c] + Na\}^+$	$C_{25}H_{31}N_4O_{16}P_2Na$	729.134(729.117)
$\{b_3 + 1' - N_3 + K\}^+$	$C_{40}H_{46}N_{11}O_{17}P_2PtK$	1249.188(1249.191)
$[a_4 - G_4^c]^+$	$C_{35}H_{44}N_9O_{21}P_3$	1020.202(1020.194)
$\{[a_4 - G_4^c] + 1'\}^+$	$C_{45}H_{53}N_{14}O_{21}P_3Pt$	1414.257(1414.245)
$\{a_4 + 1' - 2py\}^{2+}$	$C_{40}H_{48}N_{17}O_{22}P_3Pt$	704.123(704.109)
$\{d_4 + 1' - N_3\}^+$	$C_{50}H_{60}N_{16}O_{26}P_4Pt$	1621.267(1621.255)
$\{d_4 + 1'\}^+$	$C_{50}H_{61}N_{19}O_{26}P_4Pt$	1663.284(1663.272)

$\{d_5 + 1' - N_3\}^{2+}$	$C_{60}H_{72}N_{21}O_{32}P_5Pt$	975.665(975.658)
$\{[a_5 - G_5] - G^b\}$	$C_{40}H_{51}N_9O_{26}P_4$	1198.200(1198.197)
$[a_5 - G_5^c]^+$	$C_{45}H_{56}N_{14}O_{27}P_4$	1349.260(1349.246)
$\{[a_5-G_5{}^c]+1{\bm\prime}-N_3\}^+$	$C_{55}H_{64}N_{16}O_{27}P_4Pt$	1701.285(1701.282)
$\{[a_5 - G_5^c] + 1'\}^+$	$C_{55}H_{65}N_{19}O_{27}P_4Pt$	1744.282(1744.297)
$\{[a_6-G_6{}^c]+1{\prime}-N_3\}^{2+}$	$C_{65}H_{76}N_{21}O_{33}P_5Pt$	1015.673(1015.671)
$\{[a_6 - G_6{}^c] + 1' - py + MeCN\}^{2+}$	$C_{62}H_{75}N_{24}O_{33}P_5Pt$	1018.181(1018.171)
$\{[a_6-G_6{}^c]+1{}'\}^{2+}$	$C_{65}H_{77}N_{24}O_{33}P_5Pt$	1037.182(1037.180)
	Other fragment ions	
$[A]^+$	$C_5H_5N_5$	136.067(136.062)
$[G]^{+}$	C ₅ H ₅ N ₅ O	152.065(152.057)
$[T_2^d]^+$	$C_{15}H_{20}N_2O_{12}P_2$	483.068(483.055)
$[A_3^d]^+$	$C_{15}H_{19}N_5O_{10}P_2$	492.076(492.070)
$[G_4/G_5^d]^+$	$C_{15}H_{19}N_5O_{11}P_2$	508.074(508.063)
$\{G + 1' - N_3 + MeCN\}^+$	$C_{17}H_{16}N_8OPt$	544.123(544.117)
${G + 1'}^+$	$C_{15}H_{14}N_{10}OPt$	546.122(546.109)
$[T_2:A_3^d]^+$	$C_{25}H_{32}N_7O_{17}P_3$	796.125(796.117)
$\{[G_4/G_5{}^d] + 1'\}^+$	$C_{25}H_{28}N_{10}O_{11}P_2Pt$	902.128(902.114)
$\{[I-G^b]+1'-N_3\}^{2+}$	$C_{65}H_{78}N_{21}O_{34}P_5Pt$	1024.681(1024.676)
$\{[I - G^b] + 1'\}^{2+}$	$C_{65}H_{79}N_{24}O_{34}P_5Pt$	1046.186(1046.185)
$\{[I - A^b] + 1'\}^{2+}$	$C_{65}H_{79}N_{24}O_{35}P_5Pt$	1054.190(1054.180)
$\{I + 1'\}^{2+}$	$C_{70}H_{84}N_{29}O_{35}P_5Pt$	1121.710(1121.709)
$[T_2:G_4^d]^+$	$C_{35}H_{44}N_{12}O2_3P_4$	1125.177(1125.167)
$\{[G_4:G_5{}^d] + 1'\}^+$	$C_{35}H_{40}N_{15}O_{17}P_3Pt$	1231.178(1231.166)
$[I + 1' - N_3]^{2+}$	$C_{70}H_{83}N_{26}O_{35}P_5Pt$	1100.207(1100.201)
${I + 1' - py + MeCN}^{2+}$	$C_{67}H_{82}N_{29}O_{35}P_5Pt$	1102.708(1102.701)

^bA and G represent the neutral loss of an adenine and a guanine base, respectively.

 $^{c}T_{n}$, A_{n} and G_{n} represent the loss of a thymine, an adenine and a guanine base, respectively, followed by elimination of a H₂O molecule to form a furan ring, n indicates the position of the base in strand **I**.

^dThe internal fragment $B_m:B_n$ results from fragmentation at both the a- and w-sites, having a phosphate group at their 5'-terminus and a furan ring at the 3'-terminus.

Table S3. Fragment ions observed by MS/MS analysis in positive-ion mode of monoplatinated I ($[I + 1'']^{2+}$, m/z 1100.196) produced by the reaction of complex 1 with ODN I at 310 K after irradiation under blue light for 1 h. (Charges for Pt moiety and the loss of protons from I for balancing the charges of the ions are omitted for clarity). 1'' = $[Pt(py)_2]^{2+}$.

Fragments For		m/z ^a
	Formula(neutral)	observed(calculated)
$[w_1]^+$	$C_{10}H_{14}N_5O_7P$	348.075(348.070)
$\{w_1 + G + 1''\}^+$	$C_{25}H_{27}N_{12}O_8PPt$	850.148(850.156)
$\{[w_2 - G^b] + 1''\}^+$	$C_{25}H_{29}N_7O_{12}P_2Pt$	877.114(877.109)
$\{w_2 + G + {\bf 1''}\}^+$	$C_{35}H_{39}N_{17}O_{14}P_2Pt$	1179.202(1179.206)
$\{[w_3-G^b]+{\bf 1''}\}^{2+}$	$C_{35}H_{41}N_{12}O_{18}P_3Pt$	603.589(603.586)
$\{[w_3-G^b]+{\bf 1''}\}^+$	$C_{35}H_{41}N_{12}O_{18}P_3Pt \\$	1206.158(1206.156)
$\{[x_4 + 1'' + Na\}^{2+}$	$C_{50}H_{57}N_{22}O_{23}P_4PtNa$	838.648(838.631)
$\{z_4 - G^b + 1''\}^{2+}$	$C_{45}H_{50}N_{17}O_{19}P_3Pt$	711.133(711.124)
$\{[w_5 - G^b] + 1''\}^{2+}$	$C_{55}H_{66}N_{19}O_{30}P_5Pt$	912.636(912.633)
$\{w_5+G+1''\}^{2+}$	$C_{65}H_{76}N_{29}O_{32}P_5Pt$	1063.685(1063.686)
$\{[a_2 - T_2{}^c] - H_2O\}^+$	$C_{15}H_{17}N_2O_8P$	385.088(385.078)
$[a_2]^+$	$C_{20}H_{25}N_4O_{11}P$	529.143(529.133)
$[d_2]^+$	$C_{20}H_{28}N_4O_{15}P_2$	627.116(627.109)
$[a_3]^+$	$C_{30}H_{37}N_9O_{16}P_2$	842.191(842.188)
$[a_4 - G_4^c]^+$	$C_{35}H_{44}N_9O_{21}P_3$	1020.196(1020.195)
$\{a_4 + [1'' - py]\}^{2+}$	$C_{45}H_{52}N_{15}O_{22}P_3Pt$	722.131(722.121)
$\{a_5 - G_5{}^c\}^+$	$C_{45}H_{56}N_{14}O_{27}P_4$	1349.245(1349.250)
$\{a_5 + 1''\}^{2+}$	$C_{60}H_{69}N_{21}O_{28}P_4Pt$	926.672(926.672)
$\{[a_5 - G_5^c] + 1''\}^+$	$C_{55}H_{64}N_{16}O_{27}P_4Pt$	1701.267(1701.281)
$\{[a_5 - G^b] + 1''\}^{2+}$	$C_{55}H_{66}N_{16}O_{28}P_4Pt$	860.154(860.150)
$\{[a_5 - G^b] + 1''\}^+$	$C_{55}H_{66}N_{16}O_{28}P_4Pt$	1719.288(1719.292)

$\{[b_5-G^b]+[1''-py]\}^{2+}$	$C_{50}H_{61}N_{15}O_{28}P_4Pt$	820.133(82.128)
$\{[b_5 - G^b] + [1'' - py]\}^+$	$C_{50}H_{61}N_{15}O_{28}P_4Pt$	1639.250(1639.248)
$\{[d_5 - G^b] + 1''\}^{2+}$	$C_{55}H_{67}N_{16}O_{31}P_5Pt$	900.146(900.133)
$\{[d_5 - G^b] + 1''\}^+$	$C_{55}H_{67}N_{16}O_{31}P_5Pt$	1799.256(1799.258)
$\{c_5 + A + 1''\}^{2+}$	$C_{65}H_{77}N_{26}O_{31}P_5Pt$	1035.182(1035.187)
$\{d_5 + 1'' + MeCN\}^{2+}$	$C_{62}H_{75}N_{22}O_{32}P_5Pt$	996.164(996.171)
$\{[a_6-G_6{}^c]+1{}^{\prime\prime}\}^{2+}$	$C_{65}H_{76}N_{21}O_{33}P_5Pt$	1015.671(1015.671)
	Other fragment ions	
$[A]^+$	$C_5H_5N_5$	136.067(136.062)
$[G]^{+}$	C ₅ H ₅ N ₅ O	152.062(152.057)
$[T_2^d]^+$	$C_{15}H_{20}N_2O_{12}P_2$	483.065(483.055)
$[A_3^d]^+$	$C_{15}H_{19}N_5O_{10}P_2$	492.074(492.070)
$\{G + G + 1''\}^+$	$C_{20}H_{18}N_{12}O_2Pt$	654.143(654.141)
$[T_2:A_3^d]^+$	$C_{25}H_{32}N_7O_{17}P_3$	796.121(796.117)
${[T_2:G_5^d] + G + 1''}^{2+}$	$C_{60}H_{69}N_{24}O_{30}P_5Pt$	979.152(979.156)
$\{[G_4{:}G_5{}^d] - H_2O + {\bm 1''}\}^+$	$C_{45}H_{51}N_{17}O_{21}P_4Pt$	1485.199(1485.213)
$\{[G_4/G_5^d] + G + 1''\}^+$	$C_{30}H_{32}N_{12}O_{12}P_2Pt$	1010.150(1010.146)
$\{[I-G^b]+[1''-py]\}^{2+}$	$C_{60}H_{73}N_{20}O_{34}P_5Pt$	985.157(985.156)
$\{[I-G^b]+1''\}^{2+}$	$C_{65}H_{78}N_{21}O_{34}P_5Pt$	1024.676(1024.680)
$\{I+1''-py\}^{2+}$	$C_{65}H_{78}N_{25}O_{35}P_5Pt$	1060.672(1060.672)

^bA and G represent the neutral loss of an adenine and a guanine base, respectively.

 ${}^{c}T_{n}$, A_{n} and G_{n} represent the loss of a thymine, an adenine and a guanine base, respectively, followed by elimination of a H₂O molecule to form a furan ring, n indicates the position of the base in strand I.

^dThe internal fragment $B_m:B_n$ results from fragmentation at both the a- and w-sites, having a phosphate group at their 5'-terminus and a furan ring at the 3'-terminus.

Table S4. Fragment ions observed by MS/MS analysis in positive-ion mode of monoplatinated I ($[I + 1'_2]^{2+}$, *m/z* 1318.727) produced by the reaction of complex 1 with ODN I at 310 K after irradiation under blue light for 1 h. (Charges for Pt moiety and the loss of protons from I for balancing the charges of the ions are omitted for clarity). 1' = $[Pt(N_3)(py)_2]^+$.

Fragments	Formula(neutral)	<i>m/z</i> ^a	
		observed(calculated)	
$[w_1]^+$	$C_{10}H_{14}N_5O_7P$	348.084(348.070)	
$\{w_1 + 1'\}^+$	$C_{20}H_{23}N_{10}O_7PPt$	742.133(742.121)	
$\left[w_2-G^b\right]^+$	$C_{15}H_{21}N_5O_{12}P_2$	526.082(526.070)	
$[w_2]^+$	$C_{20}H_{26}N_{10}O_{13}P_2$	677.131(677.125)	
$\{w_2 + 1'\}^{2+}$	$C_{30}H_{35}N_{15}O_{13}P_2Pt$	1071.181(1071.174)	
$\{\mathbf{w}_3 + \mathbf{1'}_2\}^{2+}$	$C_{50}H_{56}N_{25}O_{19}P_3Pt_2$	897.654(897.642)	
$\{\mathbf{w}_4 + \mathbf{1'}_2\}^{2+}$	$C_{60}H_{68}N_{30}O_{24}P_4Pt_2$	1054.176(1054.171)	
$\{[z_4-{\rm H_2O}]+1{\prime}-py\}^{2+}$	$C_{45}H_{49}N_{24}O_{19}P_3Pt$	759.626(759.631)	
$[a_2]^+$	C ₂₀ H ₂₅ N ₄ O ₁₁ P	529.136(529.133)	
$[a_4 - G_4^c]^+$	$C_{35}H_{44}N_9O_{21}P_3$	1020.201(1020.195)	
$[a_5 - G_5^c]^+$	$C_{45}H_{56}N_{14}O_{27}P_4$	1349.266(1349.250)	
$\{[a_5 - G_5^c] + 1'\}^+$	$C_{55}H_{65}N_{19}O_{27}P_4Pt$	1744.290(1744.299)	
	Other fragment ions		
$[T_2^d]^+$	$C_{15}H_{20}N_2O_{12}P_2$	483.068(483.055)	
$[G_4/G_5^d]^+$	$C_{15}H_{19}N_5O_{11}P_2$	508.074(508.063)	
$\{G + 1'\}^+$	C ₁₅ H ₁₄ N ₁₀ OPt	546.117(546.109)	
$[T_2:A_3^d]^+$	$C_{25}H_{32}N_7O_{17}P_3$	796.125(796.117)	
$[G_4:G_5^d]^+$	$C_{25}H_{32}N_{10}O_{17}P_3$	837.126(837.115)	
$[I]^{2+}$	$C_{60}H_{75}N_{24}O_{35}P_5$	924.191(924.180)	
{ I + 1'} ²⁺	$C_{70}H_{84}N_{29}O_{35}P_5Pt$	1121.710(1121.711)	
$[T_2:G_4^d]^+$	$C_{35}H_{44}N_{12}O_{23}P_4$	1125.163(1125.164)	
$\{I+1'_2-2N_3-py+N\}^{2+}$	$C_{75}H_{87}N_{28}O_{35}P_5Pt_2$	1243.706(1243.702)	
$\{[I - A^b] + 1'_2\}^{2+}$	$C_{75}H_{88}N_{29}O_{35}P_5Pt_2$	1251.200(1251.207)	

^bA and G represent the neutral loss of an adenine and a guanine base, respectively.

 $^{c}T_{n}$, A_{n} and G_{n} represent the loss of a thymine, an adenine and a guanine base, respectively, followed by elimination of a H₂O molecule to form a furan ring, n indicates the position of the base in strand **I**.

^dThe internal fragment $B_m:B_n$ results from fragmentation at both the a- and w-sites, having a phosphate group at their 5'-terminus and a furan ring at the 3'-terminus.

Figure S1. The isotopic models (dots) and mass spectra (lines) of several representative platinated adducts under positive-ion mode for the reaction of complex **1** and ODN **I** upon light irradiation. The C, O, H, G, K and Na represent carbon atom, oxygen atom, hydrogen atom, guanine base, potassium ion and sodium ion, respectively.