Supporting Information

Blue-LED activated photocatalytic hydrogenation of nitroarenes with Cu₂O/CuO heterojunctions

Ignacio Chamorro-Mena, Noemí Linares*, Javier García-Martínez*

Laboratorio de Nanotecnología Molecular. Departamento de Química Inorgánica. Universidad de Alicante, Spain.

List of Figures and Tables

- Electronic microscopy of as synthesized copper oxides:	
Figure S1. TEM micrographs and SAED of as-synthesized copper oxides	3
- Textural properties of the materials:	
Figure S2. N_2 physisorption isotherms of the MOF precursor and the different catalysts	4
- Photocatalytic vs catalytic performance of the as-synthesized copper oxides	:
Figure S3. Performance of Cu ₂ O/CuO = 0.42	5
Figure S4. Performance of Cu ₂ O/CuO = 0.15	6
Figure S5. Performance of Cu ₂ O/CuO = 0.01	7
- XPS spectra after 1 photocatalytic cycle:	
Figure S6. $Cu2p_{3/2}$ XPS spectra of the catalysts after one photocatalytic cycle	8
Figure S7. Cu LMM spectra of the catalysts after 1 cycle of photoreduction	9
Figure S8. O1s XPS spectra before and after one photocatalytic cycle	10
Table S1. Distribution of oxygen on the catalysts' surface after 1 photocatalytic cycle.	10
- Hydrolysis of sodium borohydride evaluation:	
Figure S9. Volume of generated H_2 vs time plot using $Cu_2O/CuO = 0.15$ as catalyst	11
Figure S10. XPS Cu2p3 spectra of the best performing catalyst after each catalytic cycle	11

- Selectivity evaluation:

Figure S11. 2-nitrophenol 12 minutes photoreduction to 2-aminophenol	12
Figure S12. 4-nitrobenzamide 12 minutes photoreduction to 4-aminebenzamide	13
Figure S13. 4-nitrobenzoic acid 12 minutes photoreduction to 4-aminobenzoic acid	14

- References

15

Figure S1. (top row) TEM micrographs of samples (left) $Cu_2O/CuO = 0.42$, (center) $Cu_2O/CuO = 0.15$ and (right) $Cu_2O/CuO = 0.01$. The scale bar represents 50 nm. (bottom row) The corresponding SAED patterns in which gold rings correspond to Cu_2O while white rings to CuO.

Figure S2. N₂ adsorption/desorption isotherms of the (left) MOF precursor and (right) the different catalysts.

Figure S3. Performance of $Cu_2O/CuO = 0.42$: (A) Conversion vs Time plot for 4-nitrophenol reduction with and without irradiation in 9 minutes. (B) Rate constant comparison between irradiated and non-irradiated nitroreduction. (C) Uv-vis spectra evolution for 4-nitrophenol photoreduction and (D) reduction. As it has been elsewhere described,[1] at the start of the reaction there is an induction time, ca. 3 min, in which no conversion was found. This is attributed to the rearrangement of the surface atoms of the catalysts. The induction time has been removed from the plots for clarity.

Figure S4. Performance of $Cu_2O/CuO = 0.15$: (A) Conversion vs Time plot for 4-nitrophenol reduction with and without irradiation in 9 minutes. (B) Rate constant comparison between irradiated and non-irradiated nitroreduction. (C) Uv-vis spectra evolution for 4-nitrophenol photoreduction and (D) reduction. As it has been elsewhere described,[1] at the start of the reaction there is an induction time, ca. 3 min, in which no conversion was found. This is attributed to the rearrangement of the surface atoms of the catalysts. The induction time has been removed from the plots for clarity.

Figure S5. Performance of $Cu_2O/CuO = 0.01$: (A) Conversion vs Time plot for 4-nitrophenol reduction with and without irradiation in 9 minutes. (B) Rate constant comparison between irradiated and non-irradiated nitroreduction. (C) Uv-vis spectra evolution for 4-nitrophenol photoreduction and (D) reduction. As it has been elsewhere described,[1] at the start of the reaction there is an induction time, ca. 3 min, in which no conversion was found. This is attributed to the rearrangement of the surface atoms of the catalysts. The induction time has been removed from the plots for clarity.

Figure S6. $Cu2p_{3/2}$ spectra of each catalyst after one photocatalytic cycle. (A) $Cu_2O/CuO = 0.42$; (B) $Cu_2O/CuO = 0.15$; (C) $Cu_2O/CuO = 0.01$.

Figure S7. Cu LMM spectra of the catalysts after 1 cycle of photoreduction. (A) $Cu_2O/CuO = 0.42$; (B) $Cu_2O/CuO = 0.15$; (C) $Cu_2O/CuO = 0.01$. In the 3 spectra a well-defined peak can be observed around 916 eV with a small shoulder peak at 918 eV. The peak at 916 is attributed to Cu_2O and the shoulder at 918 is due to a small amount of metallic copper present in the samples.[2]

Figure S8. O1s XPS spectra of: (A) $Cu_2O/CuO = 0.42$, (B) $Cu_2O/CuO = 0.15$ and (C) $Cu_2O/CuO = 0.01$ before (left) and after (right) one photocatalytic cycle.

Table S1. Variation of distribution of oxygen on the catalysts' surface after 1 photocatalytic cycle. Data obtained through O1s XPS spectra deconvolution.

	Initial			1 st cycle		
	Lattice	Vacant	ОН	Lattice	Vacant	ОН
Cu ₂ O/CuO = 0.42	67.5 %	27.1 %	05.5 %	28.4 %	37.1 %	34.5 %
Cu ₂ O/CuO = 0.15	65.8 %	28.1 %	06.1 %	41.8 %	39.1 %	19.1 %
Cu ₂ O/CuO = 0.01	71.3 %	19.5 %	09.1 %	49.8 %	36.1 %	14.1 %

Figure S9. Volume of generated H_2 vs time plot using $Cu_2O/CuO = 0.15$ as catalyst. Solid line is for blue LEDS irradiated hydrolysis and dashed for non-irradiated.

Figure S10. XPS Cu2p3 spectra of the best performing catalyst after each catalytic cycle.

Figure S11. 2-nitrophenol 12 minutes photoreduction to 2-aminophenol. Chromatograms obtained from HPLC-MS of samples taken before photoreduction (above) and after reaction (below).

Figure S12. 4-nitrobenzamide 12 minutes photoreduction to 4-aminebenzamide. Chromatograms obtained from HPLC-MS of samples taken before photoreduction (above) and after reaction (below).

Figure S13. 4-nitrobenzoic acid 12 minutes photoreduction to 4-aminobenzoic acid. Chromatograms obtained from HPLC-MS of samples taken before photoreduction (above) and after reaction (below).

References

- [1] T. Aditya, A. Pal, T. Pal, Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts, Chem. Commun. 51 (2015) 9410–9431. https://doi.org/10.1039/c5cc01131k.
- [2] P. S. and M. B. S. Poulston, P. M. Parlett, Surface Oxidation and Reduction of CuO and Cu₂O Studied Using XPS and XAES, Surf. Interface Anal. 24 (1996) 811–820. https://doi.org/10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z