RuO₂ nanoparticles anchored on g-C₃N₄ as an efficient bifunctional electrocatalyst for water splitting in acidic media

Yun Wu, Rui Yao, Qiang Zhao, Jinping Li, Guang Liu*

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical

Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024,

PR China.

Supplementary figures and tables

Figure S1. XRD image of RuO_2/C_3N_4 and commercial RuO_2 .

Figure S3. Inverse fast Fourier transform (IFFT) image of RuO_2/C_3N_4 .

Figure S4. Fourier transform infrared spectroscopy (FT-IR) image of RuO_2/C_3N_4 , RuO_2 and $g-C_3N_4$.

Figure S5. XPS survey pattern of RuO_2/C_3N_4 and $g-C_3N_4$.

Figure S6. a) Ru 3p, b) O 1s XPS spectra of bare RuO₂.

Figure S7. a) C 1s, b) N 1s XPS spectra of bare g-C₃N₄.

Figure S8. Polarization curves of catalysts with different ratios for OER.

Figure S9. a) SEM image of RuO_2/C_3N_4 -0.01, b) SEM image of RuO_2/C_3N_4 -0.03.

Figure S10. Polarization curves of OER for catalysts with different annealing temperatures.

Figure S11. XRD image of RuO_2/C_3N_4 at different calcination temperatures.

Figure S12. CV curves of a) RuO_2/C_3N_4 , b) RuO_2 , c) C_3N_4 , d) Current density as a function of the scan rate for RuO_2/C_3N_4 , RuO_2 and $g-C_3N_4$ for OER.

Figure S13. ECSA based LSV of RuO_2/C_3N_4 and commercial RuO_2 for OER.

Figure S14. CV curves of a) RuO_2/C_3N_4 , b) commercial RuO_2 .

Figure S15. a) SEM image, b) TEM image, c) HRTEM image of RuO_2/C_3N_4 after long time chronopotentiometry test.

Figure S16. SEM-EDS element mappings of RuO_2/C_3N_4 after long time chronopotentiometry test.

Figure S17. a) Ru 3p, b) O 1s, c) C 1s and d) N 1s XPS spectra of RuO_2/C_3N_4 after long time chronopotentiometry test.

Figure S18. FT-IR spectra of RuO_2/C_3N_4 after chronopotentiometry test.

Figure S19. The Ru content in electrolyte after chronopotentiometry test at 10 mA/cm².

Figure S20. The volume of O_2 and H_2 produced by RuO_2/C_3N_4 in 0.5 M H_2SO_4 .

Figure S21. CV curves of a) RuO_2/C_3N_4 , b) RuO_2 , c) C_3N_4 , d) Current density as a function of the scan rate for RuO_2/C_3N_4 , RuO_2 and C_3N_4 for HER.

Figure S22. ECSA based LSV of RuO_2/C_3N_4 and commercial RuO_2 for HER.

Figure S23. CV curves of a) RuO_2/C_3N_4 , b) Pt/C.

catalyst	ECSA/cm ² mg ⁻¹	C _{dl} /mFcm ⁻²
RuO_2/C_3N_4	835.5	16.71
RuO ₂	743.5	14.87
$g-C_3N_4$	4.4	0.088

Table S1. The ECSA of $RuO_2/C_3N_4,\,RuO_2$ and $g\text{-}C_3N_4$ for OER

Catalysts	Electrolyte	η (mV) @10m A cm ⁻²	Reference
RuO ₂ /C ₃ N ₄	0.5 M H ₂ SO ₄	240	This work
Ni-RuO ₂	0.5 M H ₂ SO ₄	214	<i>Nat. Mater.</i> ¹
$RuO_2@/(Co,Mn)_3O_4$	0.5 M H ₂ SO ₄	270	Appl. Catal. B. Environ. ²
UfD-RuO ₂	0.5 M H ₂ SO ₄	179	Adv. Energy Mater. ³
BCC-Cr-SrIrO ₃	0.1 M HClO ₄	217	Nano Energy. ⁴
RuCu NSs/C	0.5 M H ₂ SO ₄	236	Angew. Chem. Int. Ed. ⁵
$IrO_x/SrIrO_3$	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	270	Nat. Commun. ⁶

Table S2. Summary of recently reported OER electrocatalysts

catalyst	ECSA/cm ² mg ⁻¹	C _{dl} /mFcm ⁻²
RuO_2/C_3N_4	1006.5	20.13
RuO ₂	539	10.78
$g-C_3N_4$	48	0.48

Table S3. The ECSA of $RuO_2/C_3N_4,\,RuO_2$ and $g\text{-}C_3N_4$ for HER

Catalysts	Electrolyte	η(mV)	Reference
		@10mAcm ⁻²	
RuO_2/C_3N_4	0.5 M H ₂ SO ₄	109	This work
0.4-Ru@NG-750	$0.5 \text{ M H}_2\text{SO}_4$	90	ACS Catal. ⁷
Ru ₂ P	$0.5 \text{ M H}_2\text{SO}_4$	17	ACS Nano ⁸
rGO-MoS ₂ /Acc-TiO ₂ /C	$0.5 \text{ M H}_2\text{SO}_4$	207	J. Mater. Chem. A. ⁹
MoP/Mo ₂ N	$0.5 \text{ M H}_2\text{SO}_4$	89	Angew. Chem. Int. Ed. ¹⁰
Ru@WNO-C	$0.5 \text{ M H}_2\text{SO}_4$	172	Nano. Energy. ¹¹

Table S4. Summary of recently reported HER electrocatalysts

Catalyst	Electrolyte	η /10 mA cm ⁻²		Cell voltage/V	Reference
		OER	HER		
RuO ₂ /C ₃ N ₄	0.5 M H ₂ SO ₄	240	109	1.60	This work
Ir-	0.5 M H ₂ SO ₄	250	26	1.51	Nano Lett. ¹²
SA@Fe@NCNT					
RuIr-NC	0.05 M H ₂ SO ₄	165	46	1.48	Nat. Commun. ¹³
Ir/GF	0.5 M H ₂ SO ₄	290	7	1.55	Nano Energy. ¹⁴
IrCo	0.1 M HClO ₄	281	17	1.59	ACS Appl.
					Mater.
					Interfaces. ¹⁵
NiSe/NF	1.0 M KOH	270	96	1.63	Angew. Chem.
					Int. Ed. ¹⁶

Table S5. Summary of recently reported bifunctional electrocatalysts

References

- Z. Y. Wu, F. Y. Chen, B. Li, S. W. Yu, Y. Z. Finfrock, D. M. Meira, Q. Q. Yan, P. Zhu, M. X. Chen, T. W. Song, Z. Yin, H. W. Liang, S. Zhang, G. Wang and H. Wang, *Nat. Mater.*, 2023, 22, 100-108.
- 2. S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao and P. Xu, *Appl. Catal. B: Environ.*, 2021, **297**, 120442.
- 3. R. X. Ge, L. Li, J. W. Su, Y. C. Lin, Z. Q. Tian and L. Chen, *Adv. Energy Mater.*, 2019, **9**, 1901313.
- X. X. Zhang, H. Su, X. Sun, C. Y. Yang, Y. L. Li, H. Zhang, W. L. Zhou, M. H. Liu, W. R. Cheng, C. Wang, H. J. Wang and Q. H. Liu, *Nano Energy*, 2022, **102**, 107680.
- 5. Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao and X. Huang, *Angew. Chem. Int. Ed.*, 2019, **58**, 13983-13988.
- 6. L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov and T. F. Jaramillo, *Science*, 2016, **353**, 1011-1014.
- 7. L. Bai, Z. Y. Duan, X. D. Wen, R. Si, Q. Q. Zhang and J. Q. Guan, ACS Catal., 2019, 9, 9897-9904.
- 8. X. Jin, H. Jang, N. Jarulertwathana, M. G. Kim and S. J. Hwang, *ACS Nano*, 2022, **16**, 16452-16461.
- J. Li, Z. Wen, Z. X. Hui, Z. W. Chen, C. C. Yang and Q. Jiang, J. Mater. Chem. A, 2020, 8, 14223-14233.
- 10. Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang, Y. Xie, L. Wang, C. Tian and H. Fu, *Angew. Chem. Int. Ed.*, 2021, **60**, 6673-6681.
- 11. G. Meng, H. Tian, L. Peng, Z. Ma, Y. Chen, C. Chen, Z. Chang, X. Cui and J. Shi, *Nano Energy*, 2021, **80**, 105531.
- 12. F. Luo, H. Hu, X. Zhao, Z. Yang, Q. Zhang, J. Xu, T. Kaneko, Y. Yoshida, C. Zhu and W. Cai, *Nano Lett.*, 2020, **20**, 2120-2128.
- D. Wu, K. Kusada, S. Yoshioka, T. Yamamoto, T. Toriyama, S. Matsumura, Y. Chen, O. Seo, J. Kim, C. Song, S. Hiroi, O. Sakata, T. Ina, S. Kawaguchi, Y. Kubota, H. Kobayashi and H. Kitagawa, *Nat. Commun.*, 2021, 12, 1145.
- 14. J. Zhang, G. Wang, Z. Q. Liao, P. P. Zhang, F. X. Wang, X. D. Zhuang, E. Zschech and X. L. Feng, *Nano Energy*, 2017, **40**, 27-33.
- 15. L. Fu, X. Zeng, G. Cheng and W. Luo, ACS Appl. Mater. Interfaces, 2018, 10, 24993-24998.
- 16. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.