Bifunctional Cu(II)-based 2D Coordination Polymer and its Composite for High Performance Electrochemical Energy Storage Application

Authors: Arif Ali^a, Waris^b, Basree^a, Mohd Zain Khan^b, Necmi Dege^c, Musheer Ahmad^{a*}, M. Shahid ^{d*}

^aDepartment of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh

Muslim University Aligarh, U.P. India 202002

^bIndustrial Chemistry Research Laboratory, Department of Industrial Chemistry, Faculty of

Science, Aligarh Muslim University Aligarh, U.P. India 202002

°Ondokuz Mayis University, Arts and Sciences Faculty, Department of Physics, Atakum 55139,

Samsun, Turkey

^dFunctional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India

Table S1. Crystal data and structure refinement for CP-1.					
CCDC NO. 2165040					
Identification code	CP-1				
Empirical formula	$C_9H_{11}ClCu_2O_{10}$				
Formula weight	441.726				
Temperature/K	100(2)				
Crystal system	orthorhombic				
Space group	Стсе				
a/Å	28.8070(12)				
b/Å	28.1264(12)				
c/Å	7.3819(3)				
α/°	90				
β/°	90				
γ/°	90				
Volume/Å ³	5981.1(4)				
Ζ	16				
p _{calc} g/cm ³	1.962				

µ/mm ⁻¹	3.069
F(000)	3535.9
Crystal size/mm ³	0.53 imes 0.27 imes 0.19
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	5.66 to 56.58
Index ranges	$-38 \le h \le 38, -37 \le k \le 37, -9 \le 1 \\ \le 9$
Reflections collected	44702
Independent reflections	$3789 [R_{int} = 0.0560, R_{sigma} = 0.0229]$
Data/restraints/parameters	3789/0/204
Goodness-of-fit on F ²	1.090
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0555, wR_2 = 0.1406$
Final R indexes [all data]	$R_1 = 0.0692, wR_2 = 0.1534$
Largest diff. peak/hole / e Å ⁻³	1.40/-1.23

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for CP-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Cu1	6780.8(3)	661.5(3)	2718.0(10)	12.3(2)
Cu2	5721.8(2)	3160.2(2)	2899.3(9)	8.8(2)
Cl1	7500	45.7(7)	2500	11.8(4)
Cl2	5000	2547.7(7)	2885(3)	8.3(4)
01	7130.0(16)	1255.0(16)	2981(8)	24.4(11)
O2	6263.0(13)	2721.2(14)	2847(6)	9.3(8)
03	6615.3(15)	3426.0(15)	2797(6)	14.0(9)
O4	6742.0(18)	648.1(18)	5403(7)	24.5(11)
05	6789.9(18)	687.8(19)	13(8)	29.1(12)
06	5742.1(18)	3158.8(18)	5593(6)	24.1(10)
07	5736.1(18)	3172.0(19)	188(7)	26.6(11)
08	5385.3(17)	3766.0(16)	2948(8)	25.6(12)
09	6239.8(15)	5227.2(15)	2428(6)	13.2(9)
O10	5885.9(15)	5930.2(15)	2201(6)	13.6(9)
C1	7500	1450(3)	2500	10.3(16)
C2	7500	1984(3)	2500	7.7(15)
C3	7086(2)	2229(2)	2664(7)	7.5(11)
C4	7081.8(19)	2725.1(19)	2656(7)	7.3(10)
C5	7500	2976(3)	2500	6.7(8)
C6	6628(2)	2984(2)	2792(8)	10.6(11)
C7	5000	3956(3)	2850(10)	7.7(14)
C8	5000	4487(3)	2697(10)	6.7(8)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for CP-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C9	5416.3(19)	4736(2)	2606(7)	9.4(10)
C10	5419(2)	5233(2)	2428(7)	7.3(11)
C11	5875(2)	5489(2)	2335(8)	11.4(11)
C12	5000	5476(3)	2340(10)	6.7(8)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for CP-1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cul	7.5(3)	7.3(4)	22.1(4)	-1.5(3)	1.4(3)	1.5(3)
Cu2	6.3(3)	6.1(3)	14.0(4)	1.6(3)	-0.2(2)	0.5(2)
C11	9.8(9)	9.5(9)	16.1(10)	-0	0.8(7)	0
C12	7.1(8)	7.2(8)	10.5(8)	-0	-0	-1.1(6)
01	13(2)	7(2)	52(3)	-4.8(18)	11(2)	-3(2)
02	4.5(18)	7.7(19)	16(2)	0.6(15)	2.8(14)	-3.0(15)
03	11(2)	8(2)	23(2)	3.7(16)	-0.9(17)	-0.4(16)
O4	26(3)	21(2)	27(3)	-1(2)	0(2)	-2(2)
05	25(3)	22(3)	41(3)	3(2)	4(2)	6(2)
06	28(3)	22(2)	23(2)	-2(2)	2(2)	-3.1(19)
07	26(3)	26(3)	28(3)	-8(2)	-8(2)	6(2)
08	14(2)	7(2)	56(4)	2.2(18)	-1(2)	2(2)
09	9(2)	10(2)	21(2)	-1.6(17)	1.1(16)	0.8(16)
O10	12(2)	6(2)	22(2)	0.4(17)	-1.0(17)	0.6(16)
C1	15(4)	4(4)	12(4)	-0	0(3)	0
C2	7(4)	6(4)	10(4)	-0	1(3)	0
C3	6(3)	9(3)	8(2)	-1(2)	0.7(19)	-1.5(19)
C4	7(2)	10(3)	5(2)	1(2)	1.3(18)	-0.7(18)
C5	11.2(19)	5.8(18)	3.1(19)	-0	1(3)	0
C6	9(3)	7(3)	16(3)	3(2)	3(2)	-1(2)
C7	8(4)	7(3)	8(3)	-0	-0	0(3)
C8	11.2(19)	5.8(18)	3.1(19)	-0	1(3)	0
C9	8(2)	13(3)	6(2)	3(2)	-0.8(18)	-0.1(19)
C10	6(3)	9(3)	8(2)	-3(2)	0.5(18)	-1.1(19)
C11	6(3)	11(3)	18(3)	-2(2)	3(2)	-1(2)
C12	11.2(19)	5.8(18)	3.1(19)	-0	1(3)	0

Table S4. Bond Lengths for CP-1.					
Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
Cu1	Cl11	2.7053(15)	O9	C11	1.283(7)
Cu1	01	1.959(5)	O10	C11	1.246(7)
Cu1	O4	1.985(5)	C1	C2	1.500(11)
Cu1	05	1.998(6)	C2	C3	1.382(7)
Cu1	O9 ²	1.983(4)	C2	C3 ¹	1.382(7)
Cu2	Cl2 ³	2.7004(14)	C3	C4	1.397(7)
Cu2	O2	1.989(4)	C4	C5 ¹	1.401(7)
Cu2	06	1.989(5)	C4	C6	1.499(7)
Cu2	O7	2.002(5)	C7	C8	1.498(10)
Cu2	08	1.960(5)	C8	C9 ³	1.390(7)
01	C11	1.251(6)	C8	C9	1.390(7)
O2	C6	1.287(7)	С9	C10	1.403(8)
O3	C6	1.244(7)	C10	C11	1.500(8)
08	C7 ³	1.234(6)	C10	C12	1.389(7)

3/2-X,+Y,1/2-Z; ² +X,-1/2+Y,1/2-Z; ³ 1-X,+Y,+Z	

Table	S 5	Rond	Angles	for	CP ₋ 1
I apre	33.	DUIIU	Aligies	101	UT-1

Table S5 Bond Angles for CP-1								
Aton	Atom Atom AtomAngle/°Atom Atom AtomAngle/°							
01	Cu1	Cl11	99.10(15)	C2	C1	O1 ¹	116.1(4)	
O4	Cu1	Cl11	95.18(15)	C2	C1	01	116.1(4)	
O4	Cu1	01	86.9(2)	C31	C2	C1	119.9(4)	
05	Cu1	Cl11	87.37(15)	C3	C2	C1	119.9(4)	
05	Cu1	01	93.5(2)	C3	C2	C3 ¹	120.3(8)	
05	Cu1	O4	177.3(2)	C4	C3	$C2^1$	120.3(6)	
O9 ²	Cu1	$Cl1^1$	101.79(13)	C5 ¹	C4	C3	119.7(5)	
O9 ²	Cu1	01	159.07(19)	C6	C4	C3	119.6(5)	
O9 ²	Cu1	O4	89.9(2)	C6	C4	C51	120.7(5)	
O9 ²	Cu1	05	88.8(2)	C4	C5	C4 ¹	119.6(7)	
O2	Cu2	C12 ³	101.97(12)	03	C6	O2	123.3(5)	
06	Cu2	C12 ³	91.45(15)	C4	C6	O2	115.8(5)	
06	Cu2	02	89.7(2)	C4	C6	O3	120.8(5)	
O7	Cu2	C12 ³	91.28(16)	08	C7	O8 ³	128.1(8)	
O7	Cu2	02	88.6(2)	C8	C7	O8 ³	115.9(4)	
O7	Cu2	06	177.0(2)	C8	C7	08	115.9(4)	
08	Cu2	Cl2 ³	100.00(15)	C9 ³	C8	C7	120.4(4)	
08	Cu2	02	158.03(18)	C9	C8	C7	120.4(4)	
08	Cu2	06	89.9(2)	C9	C8	C9 ³	119.2(7)	

	Table S5. Bond Angles for CP-1.						
Aton	n Aton	n Atom	Angle/°	Atom Atom Atom	Angle/°		
08	Cu2	O7	90.8(2)	C10 C9 C8 ³	120.7(5)		
Cu1	Cl1	$Cu1^1$	100.38(7)	C11 C10 C9	119.1(5)		
Cu2	Cl2	$Cu2^3$	100.71(7)	C12 C10 C9	119.4(6)		
$C1^1$	01	Cu1	141.7(5)	C12 C10 C11	121.5(5)		
C6	O2	Cu2	106.6(3)	O10 C11 O9	123.7(6)		
C7 ³	08	Cu2	145.1(5)	C10 C11 O9	116.1(5)		
C11	09	Cu1 ⁴	106.7(4)	C10 C11 O10	120.2(5)		
01	C1	O1 ¹	127.9(8)	C10 ³ C12 C10	120.7(7)		

¹3/2-X,+Y,1/2-Z; ²+X,-1/2+Y,1/2-Z; ³1-X,+Y,+Z; ⁴+X,1/2+Y,1/2-Z

Table S6. Apparent rate constant (kapp), half-life time of reaction rate $(t_{1/2})$, and corresponding correlation factor (R²) for degradation of MR dye over a CP-1 catalyst, an obtained value from the Langmuir Hinshelwood rate equation.

CP-1							
Parameters→	\mathbf{k}_{app} (min ⁻¹)	$t_{1/2}(\min^{-1})$	R ²				
5 mg	0.03465	20	0.928				
10 mg	0.03773	18.36	0.946				
20 mg	0.06571	10.54	0.944				

Figure S1. FTIR spectra of CP-1, CuO NPs and CuO@CP-1.

Figure S2. PXRD patterns (a) simulated of CP-1, as-synthesized CP-1, (b) As-synthesized CP-1, CuO NPs and CuO@CP-1.

Figure S3. BET adsorption-desorption isotherm and BJH pore width distribution of N2 at 77k: (a, b) for CP-1, and (c, d) for CuO@CP-1.

Figure S4. SEM images of CuO NPs on 1mm mixed selective area for elemental mapping (a-c).

Figure S5. SEM images of CuO@CP-1 on 1mm mixed selective area for elemental mapping (a-e).

Figure S6. Thermogravimetric curves of as-synthesized coordination polymer (CP-1), nanoparticle (CuO) and composite (CuO@CP-1).

Figure S7. The experimental optical band gap of as-synthesized CP-1.

Figure S8. CV profiles of (a) CuO NPs, and (b) composite at different scan rates from 10-500 mVs⁻¹.

Figure S9. CD profiles of (a) CuO NPs, and (b) composite at different current density ranging from 1-10 A g^{-1} .

Figure S10. Cyclic stability of CP-1, CuO@CP-1 up to 5000 charge-discharge cycles at 10 A g⁻¹.

Figure S11. Nyquist plot of CP-1, CuO NPs and CuO@CP-1 electrode materials.

Figure S12: Equivalent circuits of the fabricated electrodes (a) CP-1, (b) CuO NPs (c) CuO@CP-1.

Figure S13: PXRD pattern (after electrochemical study) of CP-1, CuO NPs, and CuO@CP-1 electrode materials.

Figure S14: FTIR spectra (after electrochemical study) of CP-1, CuO NPs, and CuO@CP-1 electrode materials.