Supporting Information

# Ligands dependent structural diversity and optimizable CO<sub>2</sub> chemical fixation activities of Cu-doped polyoxo-titanium clusters

Xin Lin,<sup>a, b</sup> Ying-Hua Yu,<sup>a, b</sup> Guang-Hui Chen,<sup>a</sup> Qiao-Hong Li,\*<sup>a</sup> Lei Zhang,\*<sup>a</sup> and Jian Zhang\*<sup>a</sup>

<sup>*a*</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. E-mail: <u>lqh2382@fjirsm.ac.cn</u>; <u>LZhang@fjirsm.ac.cn</u>; <u>zhj@fjirsm.ac.cn</u>

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China

# 1. Single crystal structure of PTC-367 to PTC-370

#### 1.1. Structure determination of PTC-367 to PTC-370.

|                                   | PTC-367                       | PTC-368                           | РТС-369           | PTC-370            |
|-----------------------------------|-------------------------------|-----------------------------------|-------------------|--------------------|
| CCDC No                           | 2264421                       | 2264422                           | 2264423           | 2264424            |
| Formula                           | $C_{52}H_{116}Cu_3O_{29}Ti_6$ | $C_{60}H_{116}Br_2Cu_2O_{34}Ti_8$ | C70H150Cu3O57Ti16 | C91H179Cu3O101Ti29 |
| Mr                                | 1683.46                       | 1026.82                           | 2861.42           | 4470.06            |
| T[K]                              | 290                           | 293                               | 100               | 100                |
| Crystal system                    | Triclinic                     | Monoclinic                        | Monoclinic        | Monoclinic         |
| Space group                       | <i>P</i> -1                   | $P2_{1}/n$                        | $P2_{1}/c$        | $P2_{1}/n$         |
| a [Å]                             | 12.9989 (3)                   | 11.6608 (2)                       | 16.0885 (4)       | 24.5562 (14)       |
| b [Å]                             | 14.2479 (3)                   | 19.3473 (4)                       | 44.2441 (8)       | 29.6251 (15)       |
| c [Å]                             | 23.6414 (3)                   | 20.8404 (3)                       | 33.1200 (4)       | 30.6831 (17)       |
| α [Å]                             | 87.179 (2)                    | 90                                | 90                | 90                 |
| β[Å]                              | 82.799 (2)                    | 91.041 (2)                        | 94.1550 (15)      | 111.029            |
| γ [Å]                             | 72.186 (2)                    | 90                                | 90                | 90                 |
| V [Å <sup>3</sup> ]               | 4135.47 (15)                  | 4700.92 (14)                      | 23513.5 (7)       | 20835 (2)          |
| Ζ                                 | 2                             | 4                                 | 8                 | 4                  |
| $\rho_c [gcm^{-3}]$               | 1.352                         | 1.451                             | 1.617             | 1.425              |
| $\mu [mm^{-1}]$                   | 7.43                          | 6.97                              | 8.91              | 7.76               |
| Radiation                         | Ga Kα                         | Ga Kα                             | Ga Kα             | Ga Kα              |
| GOOF                              | 1.042                         | 1.063                             | 1.016             | 0.999              |
| $R_1[I\!\!>\!\!2\sigma(I)]^{[a]}$ | 0.084                         | 0.087                             | 0.091             | 0.096              |
| $wR_2[I \ge 2\sigma(I)]^{[b]}$    | 0.224                         | 0.279                             | 0.277             | 0.344              |

 Table S1 Crystal data and structure refinement summary for PTC-367 to PTC-370.

[a]  $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$ .

[b] wR<sub>2</sub> = { $\Sigma$ [w( $F_o^2 - F_c^2$ )<sup>2</sup>]/ $\Sigma$ [w( $F_o^2$ )<sup>2</sup>]}<sup>1/2</sup>

1.2. Single crystal structures and packing mode of PTC-367 to PTC-370.

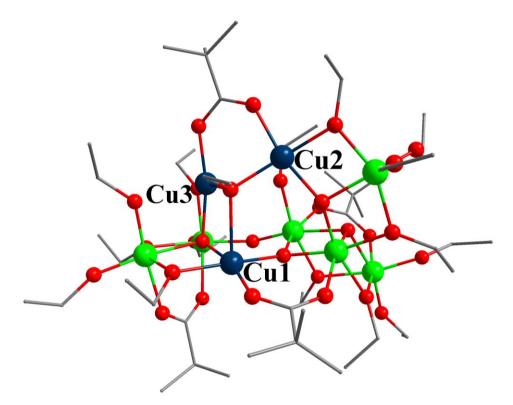



Figure S1. The structure of PTC-367. H atoms were omitted for clarity. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.

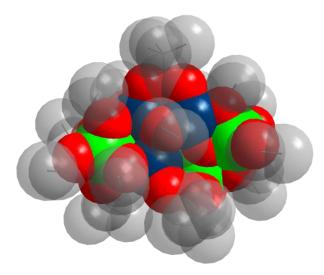



Figure S2 Space-filling model of the structure of PTC-367. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.

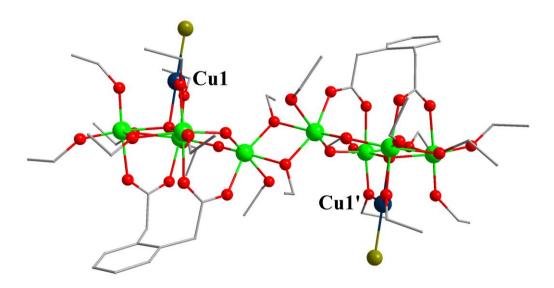



Figure S3 The structure of PTC-368. H atoms were omitted for clarity. Atom color code: green Ti; Blue Cu; red O; gray C; brown Br. Omit H for clarity.

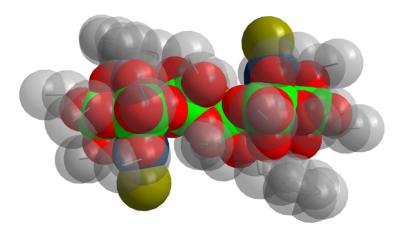



Figure S4 Space-filling model of the structure of PTC-368. Atom color code: green Ti; Blue Cu; red O; gray C; brown Br. Omit H for clarity.

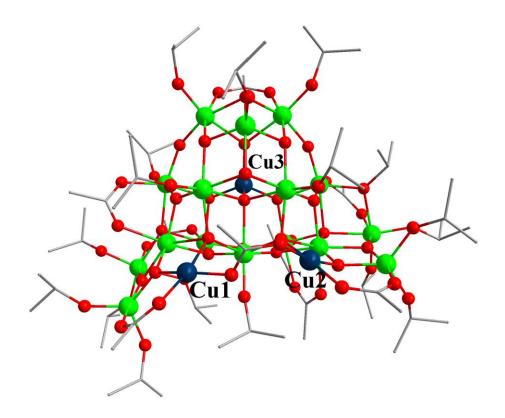



Figure S5 The structure of PTC-369. H atoms were omitted for clarity. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.

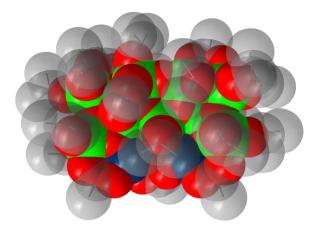



Figure S6 Space-filling model of the structure of PTC-369. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.

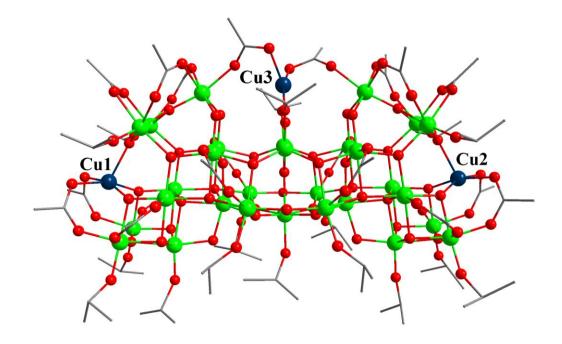



Figure S7 The structure of PTC-370 H atoms were omitted for clarity. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.

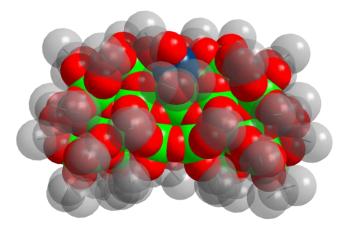
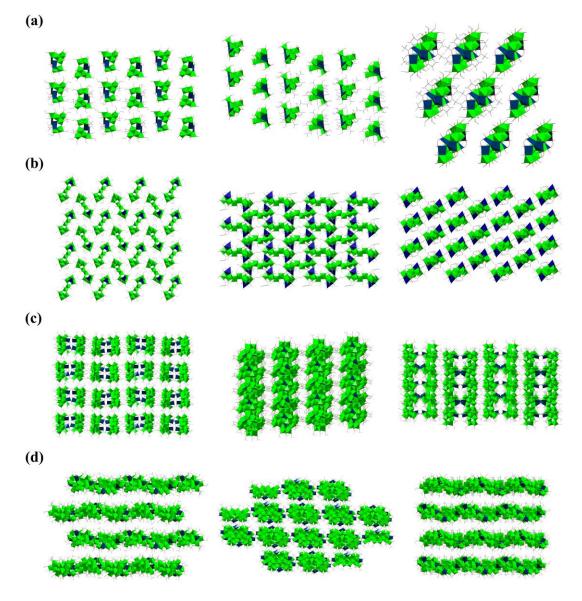




Figure S8 Space-filling model of the structure of PTC-370. Atom color code: green Ti; Blue Cu; red O; gray C. Omit H for clarity.



**Figure S 9** The packing view of (a) **PTC-367** to (d) **PTC-370** along thea-, c- and b- axis. Color codes: green Ti; green, Cu; gray C; red O; brown Br. Omit H for clarity.

1.3. Metal coordination mode of PTC-367 to PTC-370.

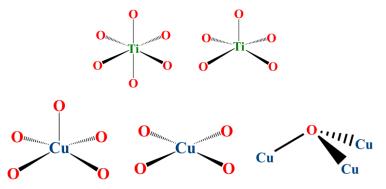



Figure S10 The  $Ti^{4+}$  and  $Cu^{2+}$  coordination mode and the spatial configuration between  $Cu^{2+}$  ions of PTC-367.

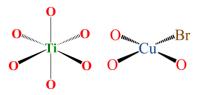



Figure S11 The Ti<sup>4+</sup> and Cu<sup>2+</sup> coordination mode of PTC-368.

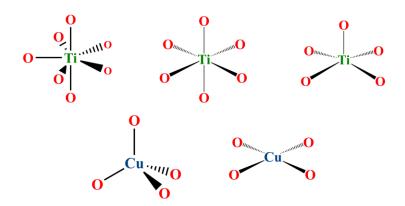



Figure S12 The  $Ti^{4+}$  and  $Cu^{2+}$  coordination mode of PTC-369.

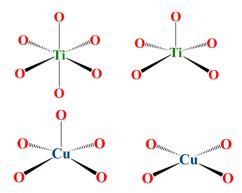



Figure S13 The a)  $Ti^{4+}$  and b)  $Cu^{2+}$  coordination mode of PTC-370.

- 2. Basic characterization of PTC-367 to PTC-370
- 2.1. PXRD patterns of PTC-367 to PTC-370.

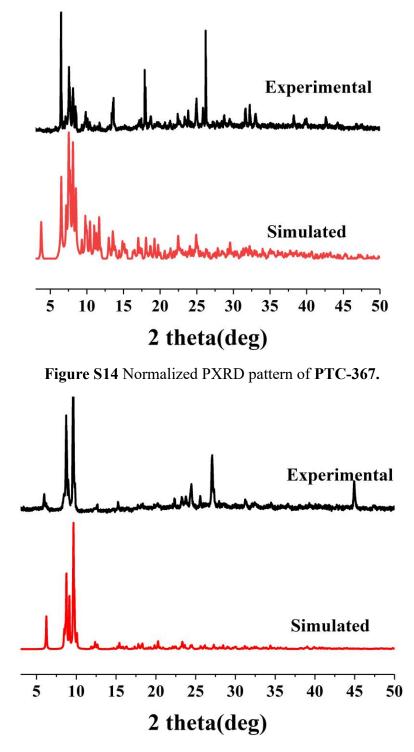



Figure S15 Normalized PXRD pattern of PTC-368.

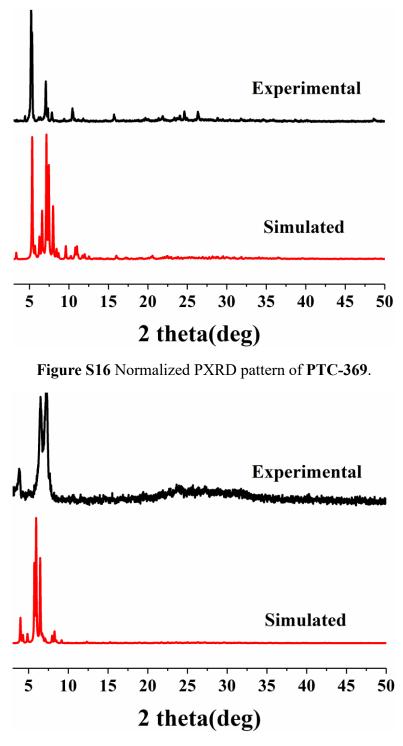



Figure S17 Normalized PXRD pattern of PTC-370.

### 2.2. TGA curves of PTC-367 to PTC-370.

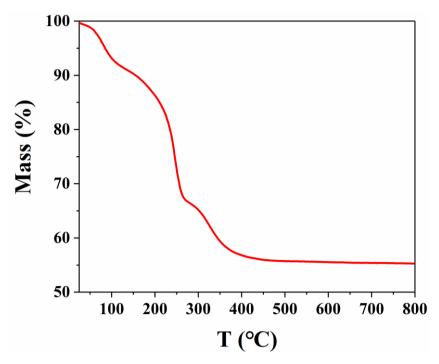



Figure S18 The TGA curve of PTC-367.

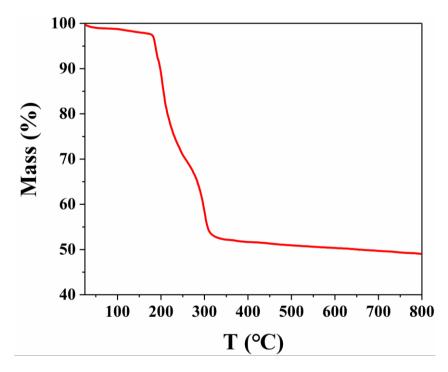



Figure S19 The TGA curve of PTC-368.

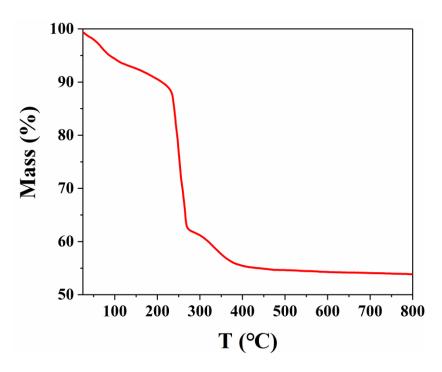



Figure S20 The TGA curve of PTC-369.

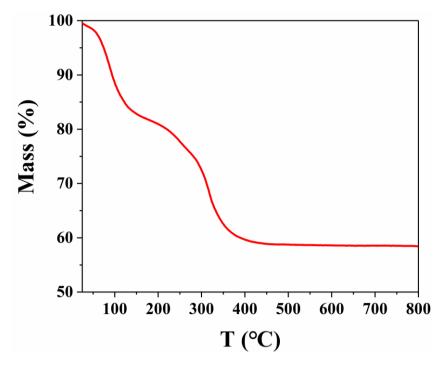



Figure S21 The TGA curve of PTC-370.

2.3. Solid UV-vis spectra and Bandgap.

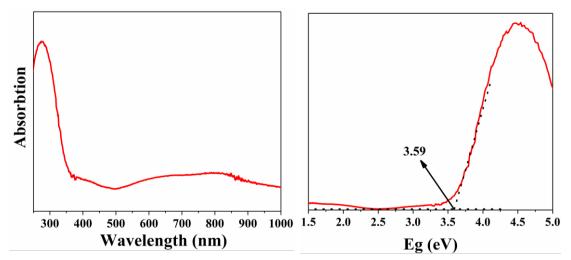



Figure S22 The normalized solid-state UV-vis spectrum and Bandgap of PTC-367.

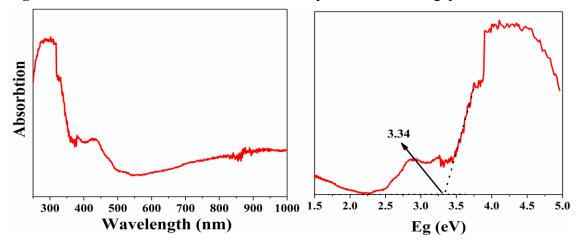



Figure S23 The normalized solid-state UV-vis spectrum and Bandgap of PTC-368.

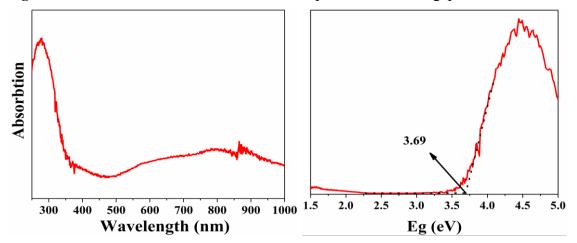



Figure S24 The normalized solid-state UV-vis spectrum and Bandgap of PTC-369.

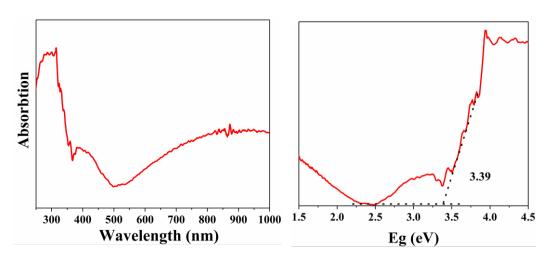
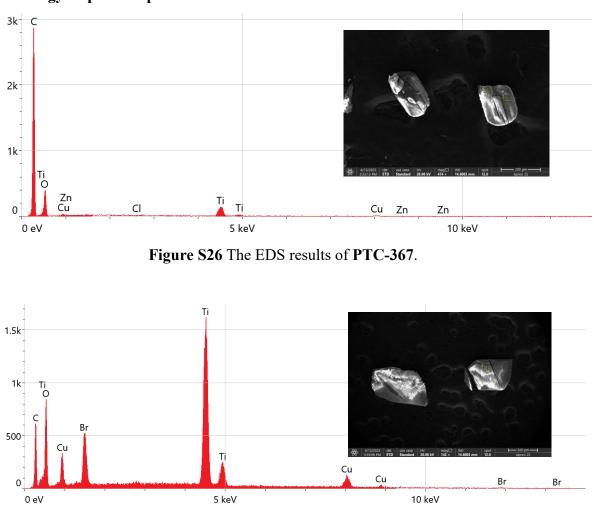
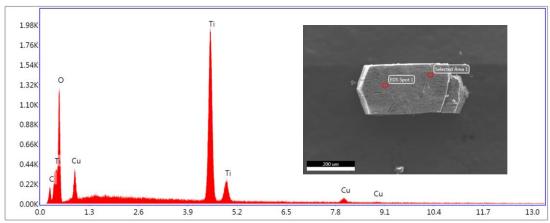





Figure S25 The normalized solid-state UV-vis spectrum and Bandgap of PTC-370.



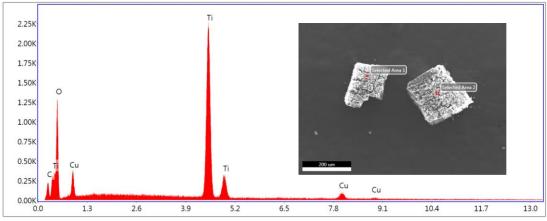

2.4 Energy dispersive spectrometer

Figure S27 The EDS results of PTC-368.



Lsec: 18.4 0 Cnts 0.000 keV Det: Octane Plus Det

Figure S28 The EDS results of PTC-369.



Lsec: 15.9 0 Cnts 0.000 keV Det: Octane Plus Det

Figure S29 The EDS results of PTC-370

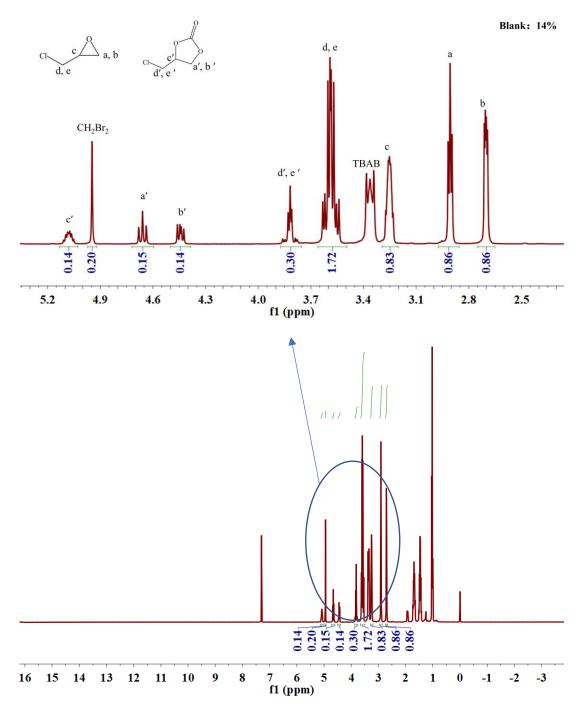
## 3. The summary of ICP-AES results

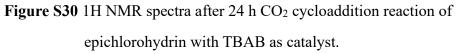
#### Table S2 The ICP-AES results of PTC-367 to PTC-370.

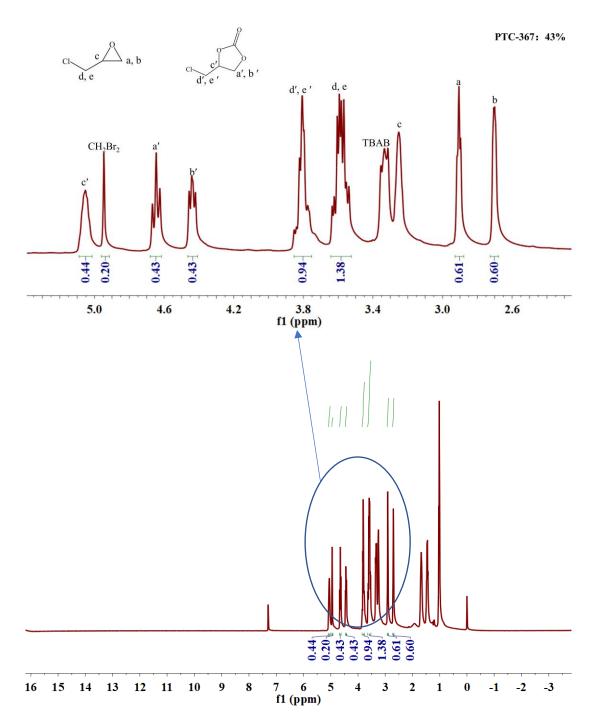
|         | Ti (wt%) | Cu (wt%) | Ti: Cu | Calculated (Ti:Cu) |
|---------|----------|----------|--------|--------------------|
| PTC-367 | 17.56    | 13.87    | 1.68   | 2.00               |
| PTC-368 | 18.45    | 6.03     | 4.06   | 4.00               |
| PTC-369 | 30.67    | 7.77     | 5.24   | 5.33               |
| PTC-370 | 33.25    | 4.91     | 8.99   | 9.67               |

#### 4. Bond valence sum calculation

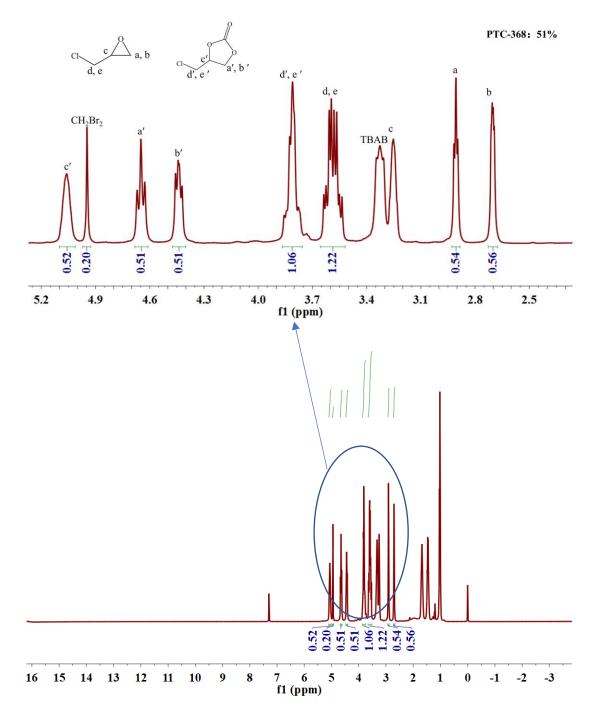
Table S3 Bond valence sum (BVS) analysis of metal ions and  $\mu$ -O for PTC-367 to


| PT | C- | -3 | 7 | 0 | • |
|----|----|----|---|---|---|
|    |    |    |   |   |   |

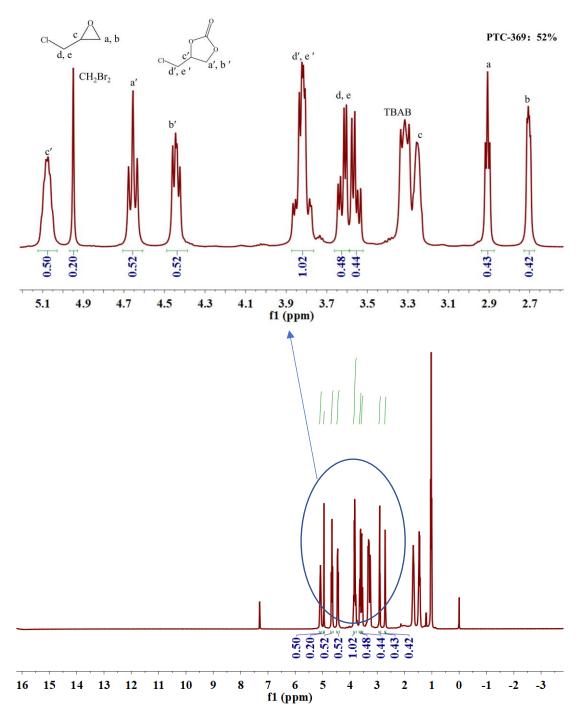

| PTC-367 |         |      |         |      |        |  |  |  |
|---------|---------|------|---------|------|--------|--|--|--|
| Ti1     | +4.178  | Ti2  | +4.316  | Ti3  | +4.204 |  |  |  |
| Ti4     | 4.347   | Ti5  | +4.369  | Ti6  | +4.327 |  |  |  |
| Cul     | +2.071  | Cu2  | +1.928  | Cu3  | +1.928 |  |  |  |
| 01      | -2.154  | 04   | -2.076  | O6   | -2.023 |  |  |  |
| 07      | -2.040  | 08   | 2.041   |      |        |  |  |  |
|         |         | P    | РТС-368 |      |        |  |  |  |
| Ti1     | +4.299  | Ti2  | +4.369  | Ti3  | +4.334 |  |  |  |
| Ti4     | +4.278  | Cu1  | +2.157  |      |        |  |  |  |
| 02      | -2.174  | 03   | -1.975  | O4   | -1.992 |  |  |  |
|         | РТС-369 |      |         |      |        |  |  |  |
| Ti1     | +4.217  | Ti2  | +4.211  | Ti3  | +4.200 |  |  |  |
| Ti4     | +4.179  | Ti5  | +4.157  | Ti6  | +4.242 |  |  |  |
| Ti7     | +4.201  | Ti8  | +4.289  | Ti9  | +4.331 |  |  |  |
| Ti10    | +4.256  | Ti11 | +3.992  | Ti12 | +4.077 |  |  |  |
| Ti13    | +4.283  | Ti14 | +4.313  | Ti15 | +4.347 |  |  |  |
| Ti16    | +4.369  |      |         |      |        |  |  |  |
| Cu1     | +1.918  | Cu2  | +1.910  | Cu3  | +2.849 |  |  |  |
| 01      | -2.115  | O2   | -1.680  | O4   | -1.962 |  |  |  |
| 05      | -1.972  | O6   | -1.824  | 07   | -2.086 |  |  |  |
| 08      | -1.707  | O10  | -1.795  | O12  | -1.855 |  |  |  |
| 015     | -2.053  | O17  | -2.067  | O18  | -2.100 |  |  |  |
| O19     | -2.058  | O20  | -2.052  | O22  | -1.974 |  |  |  |
| O24     | -1.832  | O26  | -2.022  | O27  | -2.092 |  |  |  |
| O29     | -2.109  | O32  | -1.957  | O35  | -2.128 |  |  |  |
| O37     | -2.136  | O42  | -2.094  |      |        |  |  |  |
| РТС-370 |         |      |         |      |        |  |  |  |
| Ti1     | +4.009  | Ti2  | +4.030  | Ti3  | +4.160 |  |  |  |


| Ti4  | +3.925 | Ti5  | +4.211 | Ti6  | +4.189 |
|------|--------|------|--------|------|--------|
| Ti7  | +3.918 | Ti8  | +4.108 | Ti9  | +4.367 |
| Ti10 | +4.028 | Ti11 | +4.232 | Ti12 | +4.139 |
| Ti13 | +4.198 | Ti14 | +4.146 | Ti15 | +4.257 |
| Ti16 | +4.195 | Ti17 | +4.160 | Ti18 | +4.100 |
| Ti19 | +4.244 | Ti20 | +4.159 | Ti21 | +4.206 |
| Ti22 | +4.284 | Ti23 | +4.191 | Ti24 | +4.200 |
| Ti25 | +4.272 | Ti26 | +4.327 | Ti27 | +4.184 |
| Ti28 | +4.291 | Ti29 | +4.268 |      |        |
| Cu1  | +1.966 | Cu2  | +2.024 | Cu3  | +1.994 |
| O1   | -2.073 | O2   | -2.059 | O3   | -2.197 |
| O4   | -2.118 | 05   | -2.054 | O6   | -2.183 |
| O7   | -2.021 | 08   | -2.031 | O9   | -2.038 |
| O10  | -1.893 | O11  | -1.966 | O12  | -1.892 |
| O13  | -1.885 | O14  | -1.916 | O15  | -2.233 |
| O16  | -2.154 | O17  | -2.073 | O18  | -2.081 |
| O19  | -2.187 | O20  | -2.056 | O21  | -2.113 |
| O22  | -1.588 | O23  | -2.002 | O24  | -2.065 |
| O25  | -1.955 | O26  | -2.232 | O27  | -2.127 |
| O28  | -1.891 | O30  | -1.925 | O31  | -2.048 |
| O33  | -1.963 | O34  | -2.058 | O40  | -1.945 |
| O41  | -1.937 | O43  | -2.024 | O44  | -1.967 |
| O45  | -2.120 | O46  | -1.628 | O47  | -1.858 |
| O56  | -2.065 | O60  | -1.953 | O68  | -2.002 |
| 077  | -1.957 | O88  | -2.037 |      |        |

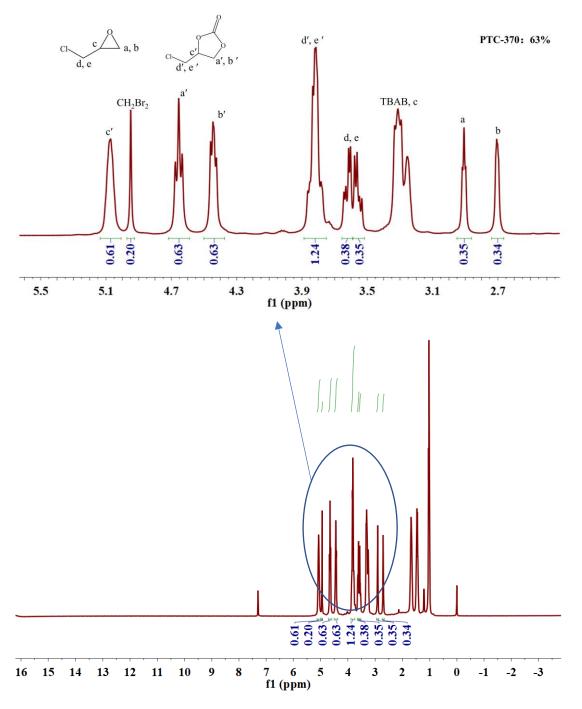
## 5. CO<sub>2</sub> cycloaddition reaction

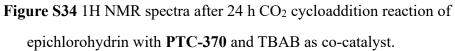

Reaction conditions: epichlorohydrin (10 mmol), catalysts (0.005 mmol), <sup>n</sup>Bu<sub>4</sub>NBr (1 mmol), room temperature, 24 h, CO<sub>2</sub> (1 atm gauge pressure). <sup>[b] 1</sup>H NMR yields with CH<sub>2</sub>Br<sub>2</sub> (1 mmol) as the internal standard.









**Figure S31** 1H NMR spectra after 24 h CO<sub>2</sub> cycloaddition reaction of epichlorohydrin with **PTC-367** and TBAB as co-catalyst.




**Figure S32** 1H NMR spectra after 24 h CO<sub>2</sub> cycloaddition reaction of epichlorohydrin with **PTC-368** and TBAB as co-catalyst.



**Figure S33** 1H NMR spectra after 24 h CO<sub>2</sub> cycloaddition reaction of epichlorohydrin with **PTC-369** and TBAB as co-catalyst.





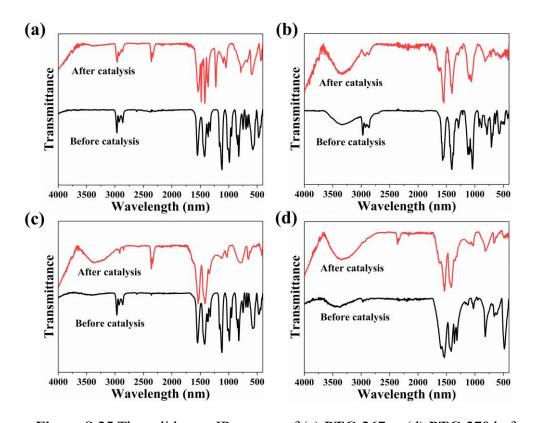



Figure S 35 The solid-state IR spectra of (a) PTC-367 to (d) PTC-370 before and after catalytic reaction (powdered crystals were saturated and precipitated after several weeks of standing).

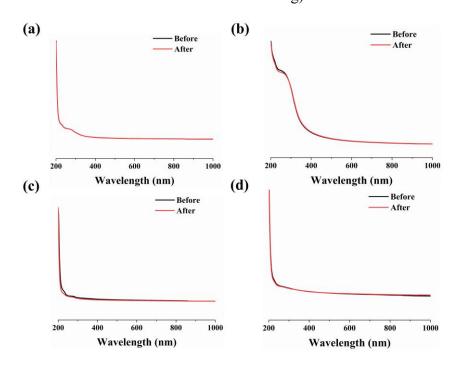



Figure S 36 The solution-state UV-Vis spectra of (a) PTC-367 to (d) PTC-370 before and after catalytic reaction.