Synthesis and Characterizations of a New Rare Earth Borate Nonlinear Optical Crystal K₇PbLu₂B₁₅O₃₀

Juhe Liu,^{a,c,d} Yuwei Chen, ^{a,b,d} Mengran Sun,^{a,b,d} Wenhao Liu, ^{a,b,d}, Xianghe Meng,^{a,d*}and Jiyong Yao^{a,b*}

^a Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser

Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing

100190, P. R. China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of

Sciences, Beijing 100049, P. R. China.

^c School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

^d University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding author:

Jiyong Yao; jyao@mail.ipc.ac.cn

Xianghe Meng: mengxianghe@mail.ipc.ac.cn

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Lul	01	2.182(6)	K1	O5 ²	2.705(6)
Lul	O1 ²	2.182(6)	K1	O5 ¹⁷	2.705(6)
Lul	O1 ³	2.182(6)	K1	O5 ¹⁸	2.705(6)
Lu1	O4 ⁴	2.296(7)	K1	O5 ¹⁶	2.706(6)
Lu1	O4 ⁵	2.295(7)	K1	05	2.706(6)
Lu1	O4 ⁶	2.296(7)	K2	O1 ¹⁶	2.843(6)
Pb1	04	2.503(7)	K2	O1 ¹⁹	2.843(6)
Pb1	O4 ¹¹	2.503(7)	K2	O2 ¹⁹	3.211(8)
Pb1	O4 ¹²	2.503(7)	K2	O2 ¹⁶	3.211(8)
Pb1	O4 ¹³	2.503(7)	K2	O3 ²⁰	2.931(7)
Pb1	O4 ¹⁴	2.503(7)	K2	O3 ²	2.931(7)
Pb1	O4 ¹⁵	2.503(7)	K2	O5 ²⁰	2.778(6)
B1	O3 ¹⁶	1.454(11)	K2	O5 ²	2.778(6)
B1	O5 ¹⁶	1.473(11)	K3	O1 ¹⁹	2.797(6)
B3	O4 ¹⁶	1.346(13)	K3	O1 ²²	2.797(6)
B2	O5 ¹⁶	1.370(12)	K3	O2 ¹⁹	3.222(7)
B2	01	1.329(12)	K3	O2 ²²	2. 222(7)
B2	O2	1.399(12)	K3	O3 ²³	2.837(8)
B3	02	1.413(12)	K3	O3 ¹¹	2.837(8)
В3	03	1.358(15)	K3	O4 ¹⁷	2.939(7)
K1	O5 ³	2.705(6)	K3	O4	2.939(7)

Table S1 Selected Bond Lengths for K₇PbLu₂B₁₅O₃₀

注: ²-1-Y, +X-Y, +Z; ³-1+Y-X, -1-X, +Z; ⁴1/3-Y+X, -1/3-Y, 2/3-Z; ⁵-2/3+Y, 2/3+X, 2/3-Z; ⁶-5/3-X, -4/3-X+Y, 2/3-Z; ⁹2/3+X, 1/3+Y, 1/3+Z; ¹¹-2+Y-X, -1-X, +Z; ¹²-2-X, -1-X+Y, -Z; ¹³-1-Y, 1+X-Y, +Z; ¹⁴-1+Y, 1+X, -Z; ¹⁵-Y+X, -Y, -Z; ¹⁶-4/3-X, -2/3-X+Y, 1/3-Z; ¹⁷-1/3-Y+X, -2/3-Y, 1/3-Z; ²⁰-1+Y, +X, -Z; ²³-4/3+Y, 1/3+X, 1/3-Z.

	Atom		Angle/°		Atom		Angle/°
O3 ⁶	B1	03	109.2(11)	03	B3	O2	118.4(9)
O3 ¹⁶	B1	O5 ¹⁶	108.7(3)	O4 ¹⁶	B3	03	121.8(9)
03	B1	05	108.7(3)	O4 ¹⁶	B3	02	119.7(11)
03	B1	O5 ¹⁶	111.4(3)	B2	02	B3	121.3(8)

O3 ¹⁶	B1	05	111.4(3)	B3	O3	B1	125.5(7)
O5 ¹⁶	B1	05	107.5(11)	B2	01	Lu1	143.5(6)
O1	B2	O2	117.8(9)	B3 ¹⁶	O4	Lu1 ⁹	131.7(7)
O1	B2	O5 ¹⁶	123.4(8)	B2 ¹⁶	05	B1	124.3(6)
O5 ¹⁶	B2	O2	118.8(8)				

注:⁹-2/3+Y, 2/3+X, 2/3-Z; ¹⁶-4/3-X, -2/3-X+Y, 1/3-Z

Table S3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for $K_7PbLu_2B_{15}O_{30}$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Lu	12.6(2)	12.6(2)	10.5(3)	0	0	6.3(1)
Pb	26.3(3)	26.3(3)	16.8(3)	0	0	13.17(13)
01	23(4)	21(3)	21(3)	6(2)	0(2)	14(3)
O2	30(5)	25(4)	41(4)	10(3)	-17(3)	3(3)
O3	29(4)	17(3)	24(3)	2(3)	-6(3)	10(3)
O4	25(4)	32(5)	44(4)	-9(3)	-4(3)	18(4)
05	21(3)	25(3)	17(3)	-5(3)	-1(3)	14(3)
B1	27(8)	23(5)	16(7)	-1(3)	-3(6)	13(4)
B2	18(7)	17(4)	19(4)	-4(3)	3(4)	7(4)
B3	30(8)	17(4)	28(4)	-2(3)	-3(6)	16(5)
K1	18.6(11)	18.6(11)	43(3)	0	0	9.3(6)
K2	22.4(15)	32.4(12)	26.0(15)	-1.4(6)	-2.7(12)	11.2(8)
К3	21.0(17)	29.4(13)	36.3(14)	-14.3(11)	-7.2(6)	14.7(7)

Table S4 Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for $K_7 PbLu_2B_{15}O_{30}$.

Atom	x	У	Z	U(eq)
Lu1	-6667	-3333	4400.6(3)	11.89(17)
Pb1	-10000	0	0	23.2(2)
O1	-5643(5)	-1696(5)	3669(4)	20.7(16)
02	-4733(6)	76(6)	2888(5)	37(2)
O3	-5623(6)	354(5)	1616(4)	23.7(14)
O4	-9553(6)	-987(6)	1228(5)	32.1(18)
O5	-6700(5)	-1493(6)	888(4)	20.5(13)

B1	-6667	-811(12)	1667	22(3)
B2	-5695(10)	-1058(8)	3010(6)	19(3)
В3	-4707(14)	801(8)	2191(7)	23(3)
K1	-6667	-3333	1667	26.8(9)
K2	-10000	-4625(3)	0	28.1(7)
K3	-11532(3)	-3333	1667	28.0(8)

Fig. S1 Comparison of experimental polycrystalline powder and theoretically simulated PXRD patterns of K₇PbLu₂B₁₅O₃₀

Fig. S2 (a) KO₆, (b) KO₈, and (c) PbO₆ groups.

Fig. S3 DSC and TG curves of K₇PbLu₂B₁₅O₃₀

Fig. S4 Comparison diagram of XRD before and after melting of compound K₇PbLu₂B₁₅O₃₀

Fig. S5 IR spectra for K₇PbLu₂B₁₅O₃₀