Supporting Information

Manuscript Title:

N-Aryloxide-Amidinate Group 4 Metal Complexes

Authors:

Hanhua Xu, Ze-jie Lv, Junnian Wei*, and Zhenfeng Xi

Affiliations:

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

Content

Experimental Methods	
X-Ray Crystallography	5
NMR spectra	15
IR spectra	27
References	

Experimental Methods

Scheme S1 Proposed mechanism for the conversion of 2 to 3:

The aryloxy group in compound 2 has nucleophilic character on the oxygen atom, which can attack the activated C=C bond generating the benzoxazine intermediate.^{S3, S4} The benzoxazine will react with one equivalent of **1** to produce ligand **3**. However, in preliminary attempts, we could only get a trace amount of ligand **3**. The amide and imide derivatives were main products at almost 1 : 1 ratio. We hypothesized that acetone, the byproduct of C-C bond cleavage, would react with **1** readily to produce imide in the presence of Lewis acid, which inhibited the nucleophilic substitution step. Moreover, H₂O from the react and condensation of acetone with **1** would also react with the benzoxazine intermediate to produce the amide. After understanding these side reactions, we achieved our goal by adding two equivalents of **1** and strictly drying the implementation of the substrate. A simple mechanistic model is proposed in Scheme S2. Protonation of the carbonyl group by TsOH (p-toluene sulfonic acid) enhances the

electrophilicity of the enamineketone fragment in **2**. Then the intramolecular nucleophilic addition of intermediate **4a** would produce adduct **4b**. Next, C-C bond cleavage would generate the intermediate **4d** in a series of equilibria involving keto-enol tautomerism and prototropy. Finally, the nucleophilic substitution would proceed smoothly to afford ligand **3** in moderate yield. In addition, the intermolecular nucleophilic addition of **4a** with H_2O would produce an adduct **4b'**. Byproduct **5** would finally be generated along with **6**.

Scheme S2 Deprotonation of 3:

Initial deprotonation of **3** was conducted in THF and only $3-Li_2$ can be observed in ¹H NMR in spite of three or excess equivalents of based added. However, when the solvent is Et₂O and Tol, the deprotonation reaction went sweetly to afford desired lithium salt, **4**.

4 was prepared by deprotonation of **3** (191.3 mg, 1.0 equiv, 0.5 mmol) with LiCH₂TMS (141.3 mg, 3.0 equiv, 1.5 mmol) in Et₂O and Tol. After stirring in a low temperature (-78 °C) for two hours, the solvent was removed under vacuum to provide a white solid, **4** (> 95 %). The ¹H NMR spectrum of **4** was confused. However, the spectrum of **4-TMEDA**

was identifiable in the presence of 1 equivalent of TMEDA. The crystal of **4-TMEDA** was obtained in Et₂O at room temperature. ¹H NMR (500 MHz, C₆D₆, ppm): δ 1.61 (s, 18H, 'Bu), 1.89 (br s, 16H, TMEDA), 1.92 (s, 3H, CH₃), 3.80 (d, *J* = 11 Hz, 2H, CH₂), 3.36 (d, *J* = 11 Hz, 2H, CH₂), 6.53 (t, *J* = 15 Hz, 2H, *Ph*), 6.81 (dd, *J* = 7 Hz, *J* = 2 Hz, 2H, *Ph*), 7.30 (dd, *J* = 7 Hz, *J* = 2 Hz, 2H, *Ph*). ¹³C NMR (125 MHz, C₆D₆): δ 13.2, 31.0, 35.5, 46.4, 51.8, 57.0, 114.5, 126.9, 128.0, 129.5, 138.5, 164.9, 175.7. FT-IR (KBr pellet, cm⁻¹): 2953 (s), 2909 (w), 1422 (s), 1226 (s), 870 (s), 746 (s), 682 (s), 620 (s).

X-Ray Crystallography

Figure S1. ORTEP drawing of **4-TMEDA** with 30% thermal ellipsoids. H atoms are omitted for clarity. Selected atom distances (Å) and angles (deg): C1-N1 1.3284(17); C1-N2 1.3286(17); C1-C2 1.5177(17); N1-C1-N2 116.81(11).

	4-TMEDA
CCDC No.	2222930
Formula	$C_{30}H_{47}Li_3N_4O_2$
Formula weight	516.53
Temp. (K)	180.00(10)
Crystal system	monoclinic
Space group	C2/c
<i>a</i> (Å)	25.2159(6)
b (Å)	14.3624(4)
<i>c</i> (Å)	17.5594(4)
<i>α</i> (°)	90
β(°)	91.260(2)
γ(°)	90
<i>V</i> [Å ³]	6357.8(3)
Ζ	8
$ ho_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.079
$\mu(\text{mm}^{-1})$	0.066
<i>F</i> (000)	2240.0
Collected data	43781
Unique data	7292 [$R_{int} = 0.0252$]
GOF on F^2	1.052
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0489, wR_2 = 0.1498$
R indexes (all data)	$R_1 = 0.0571, wR_2 = 0.1554$
Completeness	0.999

 Table S1. Crystal data and structure refinement for 4-TMEDA.

Figure S2. ORTEP drawing of **5-Ti** with 30% thermal ellipsoids. H atoms, CH₃ groups of the 'Bu substituents and solvents have been omitted for clarity. Selected atom distances (Å) and angles (deg): C1-N1 1.391(3); C1-N2 1.290(3); C1-C2 1.494(3); Ti1'-N1 2.208(2); Ti1'-N2 2.0692(18); Ti1'-C11' 2.3131(7); Ti1'- O2 1.8192(18); Ti1-O1' 1.8150(15); Ti1'-Ti1 3.3905(8); N1-C1-N2 110.37(19); N1'-Ti1'-C11' 164.32(5).

	5-Ti
CCDC No.	2222254
Formula	$C_{55}H_{73}Cl_2N_4O_5Ti_2$
Formula weight	1036.87
Temp. (K)	180.00(10)
Crystal system	orthorhombic
Space group	Рсса
a (Å)	27.7408(8)
b (Å)	16.6115(4)
<i>c</i> (Å)	24.3585(7)
<i>α</i> (°)	90
β(°)	90
γ(°)	90
<i>V</i> [Å ³]	11224.8(5)
Ζ	8
ρ _{calcd} (g·cm ⁻³)	1.227
$\mu(\text{mm}^{-1})$	0.427
<i>F</i> (000)	4392.0
Collected data	49340
Unique data	$12844 [R_{int} = 0.0289]$
GOF on F^2	1.025
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0525, wR_2 = 0.1506$
R indexes (all data)	$R_1 = 0.0662, wR_2 = 0.1588$
Completeness	0.997

 Table S2. Crystal data and structure refinement for 5-Ti.

Figure S3. ORTEP drawing of **5-Zr** with 30% thermal ellipsoids. H atoms, CH₃ groups of the 'Bu substituents and solvents have been omitted for clarity. Selected atom distances (Å) and angles (deg): C1-N1 1.336(2); C1-N2 1.337(2); C1-C2 1.489(2); Zr1-N1 2.3887(12); Zr1-N2 2.3200(12); Zr1-C11 2.4689(4); Zr1-O1 1. 970(1); Zr1-O2 1.9711(10); Zr1-Zr1' 3.2231(3); O1-Zr1-O2 103.01(5).

	5-Zr
CCDC No.	2222931
Formula	$C_{48}H_{62}Cl_2N_4O_4Zr_2$
Formula weight	1012.35
Temp. (K)	179.99(10)
Crystal system	triclinic
Space group	P-1
a (Å)	12.3616(3)
<i>b</i> (Å)	13.1320(3)
<i>c</i> (Å)	16.7306(4)
<i>α</i> (°)	101.875(2)
β(°)	109.119(2)
γ(°)	104.700(2)
<i>V</i> [Å ³]	2354.84(10)
Ζ	2
$ ho_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.428
$\mu(\text{mm}^{-1})$	0.603
<i>F</i> (000)	1048.0
Collected data	41430
Unique data	$10762 [R_{int} = 0.0281]$
GOF on F^2	1.063
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0240, wR_2 = 0.0638$
R indexes (all data)	$R_1 = 0.0273, wR_2 = 0.0649$
Completeness	0.998

Table S3. Crystal data and structure refinement for 5-Zr.

Figure S4. ORTEP drawing of **5-Hf** with 30% thermal ellipsoids. H atoms, CH₃ groups of the 'Bu substituents and solvents have been omitted for clarity. Selected atom distances (Å) and angles (deg): C1-N1 1.385(4); C1-N2 1.2984(2); C1-C2 1.497(4); Hf1-N1 2.340(2); Hf1-N2 2.224(2); Hf1-Cl1 2.4489(7); Hf1-O1 1. 952(2); Hf1-O2 1.9515(19); Hf1-Hf1' 3.4620(2); O1-Hf1-O2 104.64(9).

	5-Hf
CCDC No.	2222935
Formula	$C_{48}H_{62}Cl_{2}Hf_{2}N_{4}O_{4}$
Formula weight	1186.89
Temp. (K)	180.00(10)
Crystal system	triclinic
Space group	P-1
a (Å)	12.2507(2)
<i>b</i> (Å)	13.1833(2)
<i>c</i> (Å)	16.8154(2)
<i>a</i> (°)	100.1710(10)
β(°)	109.6060(10)
γ(°)	103.6480(10)
V [Å ³]	2387.07(6)
Ζ	2
$ ho_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.651
$\mu(\text{mm}^{-1})$	4.504
<i>F</i> (000)	1176.0
Collected data	62891
Unique data	$10906 [R_{int} = 0.0742]$
GOF on F^2	1.025
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0296, wR_2 = 0.0711$
R indexes (all data)	$R_1 = 0.0325, wR_2 = 0.0724$
Completeness	0.999

Table S4. Crystal data and structure refinement for 5-Hf.

Figure S5 ORTEP drawing of **6** with 30% thermal ellipsoids. Hydrogen atoms, lithium and solvents have been omitted for clarity. Selected atom distances (Å) and angles (deg): C1-N1 1.335(4); C1-N2 1.337(4); Hf1-N1 2.219(3); Hf1-N3 2.236(3); Hf1-N6 2.255(3); Hf2-N2 2.223(3); Hf2-N3 2.245(3); Hf2-N6 2.259(3); Hf1-O1 1.939(2); Hf2-O2 1.945(2); Hf1-C11 2.425(18); Hf1-Cl2 2.4153(8); Hf2-Cl3 2.4203(9); Hf2-Cl4 2.4022(9); N3-N4 1.221(4); N4-N5 1.127(4); N6-N7 1.225(4); N7-N8 1.130(4); Hf1-Hf2 3.57762(19); N1-C1-N2 120.5(3); Hf1-N3-Hf2 104.82(10); Hf1-N6-Hf2 105.95(11).

	6
CCDC No.	2249134
Formula	$C_{40}H_{62}Cl_4Hf_2LiN_8O_6$
Formula weight	1256.709
Temp. (K)	179.99(10)
Crystal system	triclinic
Space group	P-1
a (Å)	12.5852(2)
<i>b</i> (Å)	12.8869(2)
<i>c</i> (Å)	17.0743(2)
<i>α</i> (°)	89.129(1)
β(°)	71.984(1)
γ(°)	72.209(1)
<i>V</i> [Å ³]	2497.84(7)
Ζ	2
$ ho_{\text{calcd}}(\mathbf{g}\cdot\mathbf{cm}^{-3})$	1.671
$\mu(\text{mm}^{-1})$	4.417
<i>F</i> (000)	1243.1
Collected data	60063
Unique data	9843 [$R_{int} = 0.0522$]
GOF on F^2	1.052
Final <i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0231, wR_2 = 0.0538$
R indexes (all data)	$R_1 = 0.0281, wR_2 = 0.0568$
Completeness	1

 Table S5. Crystal data and structure refinement for 6.

NMR spectra

Figure S8. ¹H NMR spectrum of 2 in CDCl₃.

Figure S9. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S10. ¹H NMR spectrum of ligand 3 in DMSO-d₆.

Figure S11. ¹³C NMR spectrum of ligand 3 in DMSO-d₆.

Figure S12. ¹H NMR spectrum of complex 4-TMEDA in C₆D₆.

Figure S13. ¹³C NMR spectrum of complex 4-TMEDA in C₆D₆.

Figure S14. ¹H NMR spectrum of complex 3-Li₂ in THF-d₈.

Figure S15. ¹H NMR spectrum of complex 4 to 3-Li₂ in THF-d₈.

Figure S16. ¹H NMR spectrum of complex 5-Ti in C₆D₆.

Figure S17. ¹³C NMR spectrum of complex 5-Ti in C₆D₆.

Figure S19. ¹³C NMR spectrum of complex 5-Zr in CDCl₃.

Figure S20. ¹H NMR spectrum of complex 5-Hf in C₆D₆.

Figure S21. ¹³C NMR spectrum of complex 5-Hf in C₆D₆.

Figure S22. ¹H NMR spectrum of complex 6 in THF-d₈.

Figure S23. ¹H NMR spectrum of complex 6 in CDCl₃.

Figure S24. ¹³C NMR spectrum of complex 6 in CDCl₃.

Figure S25. HSQC spectrum of complex 6 in CDCl₃.

IR spectra

Figure S28. IR spectrum of 5-Ti.

Figure S29. IR spectrum of 5-Zr.

Figure S30. IR spectrum of 5-Hf.

Figure S31. IR spectrum of 6.

References

- [S1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [S2] Forder, T. R.; Jones, M. D. Synthesis and Characterisation of Aluminium(III) Imine Bis(phenolate) Complexes with Application for the Polymerisation of Rac-LA. New J. Chem. 2015, 39, 1974-1978.
- [S3] Dulong, F.; Thuéry, P.; Ephritikhine, M.; Cantat, T. Synthesis of N-Aryloxy-βdiketiminate Ligands and Coordination to Zirconium, Ytterbium, Thorium, and Uranium. *Organometallics* 2013, *32*, 1328-1340.
- [S4] Mayo, M. S.; Yu, X.; Zhou, X.; Feng, X.; Yamamoto, Y.; Bao, M. Synthesis of Benzoxazoles from 2-Aminophenols and β-Diketones Using a Combined Catalyst of Brønsted Acid and Copper Iodide. J. Org. Chem. 2014, 79, 6310-6314.