Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

# **Supporting Information**

## Co-based MOF heterogeneous catalyst for efficient degradation of

### organic dye via peroxymonosulfate activation

Wei Xie,<sup>a</sup> Yuan Yuan,<sup>a</sup> Jia-Jun Wang,<sup>a</sup> Shu-Ran Zhang,<sup>a</sup> Guang-Juan Xu,<sup>a</sup> Nan Jiang,<sup>a</sup> Yan-Hong Xu,<sup>\*a</sup> and Zhong-Min Su<sup>\*b</sup>

<sup>a</sup> Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, Jilin, PR China

<sup>b</sup> Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (P. R. China)

\* Corresponding author

E-mail: xuyh198@163.com; zmsu@nenu.edu.cn

#### S1. Materials and characterization

All chemical reagents for synthesis were purchased commercially and were used directly without further purification. Powder X-ray diffraction (PXRD) data were obtained on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from  $2\theta = 3^{\circ}$  up to  $50^{\circ}$  with  $0.02^{\circ}$  increment. The IR spectrum was measured with a Perkin-elmer model FT-IR-frontier infrared spectrometer. Thermogravimetric analysis (TGA) was record on a Q5000IR analyser (TA Instruments) with an automated vertical overhead thermobalance heated from room temperature to 800 °C with a heating rate of 5° C/min under nitrogen gas atmosphere. Elemental analyses (C, H and N) were conducted on a Perkin-Elmer 240C elemental analyzer. The UV-vis absorption spectra were carried out using Jasco V-770 spectrometer (JAPAN) spectrophotometer.

#### S2. Synthesis of JLNU-500

Co(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (0.058 g, 0.2 mmol), 4-(pyridin-4-yl) benzoic acid (HPBA, 0.020 g, 0.1 mmol), and 5-aminoisophthalic acid (H<sub>2</sub>AIP, 0.018 g, 0.1 mmol) were dissolved in a 6 mL mixture of N,N-dimethylacetamide (DMA) and H<sub>2</sub>O (v/v = 1:1). The clear solution was sealed in a 10 mL Teflon-lined stainless vessel and heated at 110 °C for 72 h. The vessel was then cooled slowly down to the room temperature. Purple block crystals of **JLNU-500** were separated in 83% yield based on HPBA ligand. Elemental microanalysis for C<sub>32</sub>H<sub>41.5</sub>N<sub>5</sub>O<sub>10.75</sub>Co<sub>2</sub>, calculated (%): C, 48.90; H, 5.32; N, 8.91. Found (%): C, 48.67; H, 5.59; N, 8.52. IR data (KBr cm<sup>-1</sup>): 3616 (w), 3364 (m), 3269 (m), 2932 (m), 1631 (s), 1592 (s), 1572 (s), 1397 (s), 1265 (m), 1187 (m), 1098 (w), 1016 (m), 960 (m), 895 (w), 783 (s), 756 (m), 679 (w), 592 (w), 488 (w).

#### **S3. Heterogeneous RhB degradation by JLNU-500/PMS**

In this study, a model pollutant RhB (rhodamine B) is chosen to evaluate the catalytic performance of Co-based MOF **JLNU-500** for PMS activation. The oxidation degradation experiments were proceeded in 100 mL of RhB aqueous solution (50 mg

L<sup>-1</sup>) in 250 mL reactor. NaOH (0.1 M) and HCl (0.1 M) were used to adjust the initial pH value. The experiments were carried out at 20 °C under ambient atmospheric condition. Before addition of PMS, the solution including **JLNU-500** catalyst (10 mg) and RhB contaminant was magnetically stirred for 10 min. And then we added PMS (30 mg, 1.0 mM) to the system. After desired intervals, 1.0 mL of the degraded solution was taken with adding 1.0 mL of 6 mM Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> aqueous solution to quench the reaction and filtered with a 0.22 -µm filter to separate the supernatant liquid from catalyst for analysis. The RhB concentrations were analyzed by using a UV-visible spectrophotometer at its maximum absorbance wavelength of 554 nm. The influence factors of RhB concentration, catalyst loading, PMS concentration. To test the recyclability of **JLNU-500** catalyst, after degradation each experiment, the **JLNU-500** was collected by centrifugation, washed with water and ethanol and dried at 70 °C for 24 h. Then the same catalyst was used for the next run catalytic degradation experiment.

A general pseudo-first-order reaction was used to estimate the degradation reaction rate as shown below:

$$\ln(C/C_0) = -kt$$

where  $C_0$  and C are the initial concentration and the concentration at various time, respectively, *k* is the first order reaction kinetic constant of RhB removal (min<sup>-1</sup>).

#### LC-MS method

The reaction intermediates of RhB were identified using liquid chromatography-mass spectrometry (LC-MS) at 554 nm. Water (mobile phase A with a flow rate of 0.25 mL min<sup>-1</sup>) and methanol (mobile phase B with a flow rate of 0.75 mL min<sup>-1</sup>) were used as mobile phases. A fixed volume injection loop was used to inject 10 µl of sample.

#### S4. Single-crystal X-ray diffraction

The X-ray single crystal diffraction data of **JLNU-500** was collected at 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation

 $(\lambda = 0.71069 \text{ Å})$ . Absorption corrections were applied using multi-scan technique. The structure was solved by Direct Method and refined by full-matrix least-squares techniques using the SHELXL-2018 program<sup>1</sup> within WINGX software<sup>2</sup>. Non-hydrogen atoms were refined with anisotropic temperature parameters. All the solvent molecules which are highly disordered and not able to be modeled were treated by the SQUEEZE<sup>3</sup> routine in PLATON<sup>4</sup>. The detailed crystallographic data and structure refinement parameters for JLNU-500 (CCDC: 2250236) are summarized in Table S1.

| Identification code                                                                                                               | JLNU-500                         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| formula                                                                                                                           | $C_{32}H_{41.5}Co_2N_5O_{10.75}$ |  |  |  |
| Formula weight                                                                                                                    | 786.06                           |  |  |  |
| Crystal system                                                                                                                    | Monoclinic                       |  |  |  |
| Space group                                                                                                                       | $P2_{l}/n$                       |  |  |  |
| a (Å)                                                                                                                             | 15.649 (7)                       |  |  |  |
| b (Å)                                                                                                                             | 12.876 (6)                       |  |  |  |
| c (Å)                                                                                                                             | 17.677 (8)                       |  |  |  |
| α (°)                                                                                                                             | 90.000                           |  |  |  |
| β (°)                                                                                                                             | 107.059 (8)                      |  |  |  |
| γ (°)                                                                                                                             | 90.000                           |  |  |  |
| $V(Å^3)$                                                                                                                          | 3405 (3)                         |  |  |  |
| Ζ                                                                                                                                 | 4                                |  |  |  |
| D <sub>calcd.</sub> [g cm <sup>-3</sup> ]                                                                                         | 1.533                            |  |  |  |
| <i>F</i> (000)                                                                                                                    | 1634                             |  |  |  |
| Reflections collected / unique                                                                                                    | 15277 / 5940                     |  |  |  |
| <i>R</i> (int)                                                                                                                    | 0.0650                           |  |  |  |
| Goodness-of-fit on $F^2$                                                                                                          | 1.086                            |  |  |  |
| $R_1^a \left[ I > 2\sigma \left( I \right) \right]$                                                                               | 0.0677                           |  |  |  |
| $wR_2^b(all\ data)$                                                                                                               | 0.1872                           |  |  |  |
| <sup>a</sup> $R_1 = \Sigma   F_o  -  F_c   / \Sigma  F_o , b \ wR_2 =  \Sigma w( F_o ^2 -  F_c ^2)  / \Sigma  w(F_o^2)^2 ^{1/2}.$ |                                  |  |  |  |

 Table S1 Crystal data and structure refinements for JLNU-500.

Table S2 Selected bond lengths (Å) for JLNU-500.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| Col  | O1#1 | 2.120(3) | Co2  | O2#1 | 2.033(4) |
| Col  | O4#2 | 2.067(3) | Co2  | O3   | 1.980(4) |
| Co1  | O6   | 2.188(4) | Co2  | 05   | 2.003(4) |
| Col  | O7   | 2.046(3) | Co2  | O7   | 2.012(4) |
| Col  | N1#3 | 2.209(5) | Co2  | O7#2 | 2.146(3) |
| Col  | N2#4 | 2.208(4) |      |      |          |

#1 1/2-X, -1/2+Y, 1/2-Z; #2 1-X, 1-Y, 1-Z; #3 -1/2+X, 1/2-Y, 1/2+Z; #4 1/2+X, 1/2-Y, 1/2+Z.

Table S3 Selected bond angles (°) for JLNU-500.

| Atom       | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------------|------|------|------------|------|------|------|------------|
| O1#1       | Co1  | 06   | 92.61(16)  | O7   | Co1  | N2#3 | 168.78(16) |
| 01#1       | Co1  | N1#2 | 87.72(17)  | N2#3 | Co1  | N1#2 | 101.12(18) |
| O1#1       | Co1  | N2#3 | 82.52(15)  | O2#1 | Co2  | O7#4 | 174.52(17) |
| O4#4       | Co1  | O1#1 | 167.01(13) | O3   | Co2  | O2#1 | 86.23(15)  |
| O4#4       | Co1  | 06   | 89.90(16)  | O3   | Co2  | 05   | 107.0(2)   |
| O4#4       | Co1  | N1#2 | 89.14(18)  | O3   | Co2  | O7#4 | 92.38(14)  |
| O4#4       | Co1  | N2#3 | 85.73(15)  | O3   | Co2  | O7   | 141.02(18) |
| 06         | Co1  | N1#2 | 177.10(17) | 05   | Co2  | O2#1 | 99.87(18)  |
| 06         | Co1  | N2#3 | 76.07(16)  | 05   | Co2  | O7#4 | 85.60(15)  |
| <b>O</b> 7 | Col  | O1#1 | 93.12(14)  | 05   | Co2  | O7   | 110.89(16) |
| <b>O</b> 7 | Col  | O4#4 | 99.42(14)  | O7   | Co2  | O2#1 | 96.09(15)  |
| <b>O</b> 7 | Col  | O6   | 93.89(15)  | O7   | Co2  | O7#4 | 81.67(14)  |
| O7         | Col  | N1#2 | 88.97(17)  |      |      |      |            |

#1 1/2-X, -1/2+Y, 1/2-Z; #2 -1/2+X, 1/2-Y, 1/2+Z; #3 1/2+X, 1/2-Y, 1/2+Z; #4 1-X, 1-Y, 1-Z.



**Fig. S1** The coordination environment diagram in **JLNU-500**, symmetry codes: #1 1/2-X, -1/2+Y, 1/2-Z; #2 1-X, 1-Y, 1-Z; #3 -1/2+X, 1/2-Y, 1/2+Z; #4 1/2+X, 1/2-Y, 1/2+Z. All hydrogen atoms have been omitted for clarity. Violet =Co; dark gray = C; red = O; blue = N.



Fig. S2 The coordination modes of ligands in JLNU-500.



Fig. S3 Ball-and-stick representation of the 3D network of JLNU-500 viewed from b axis and the channel (13.4 Å  $\times$  7.3 Å).



Fig. S4 The (3,10)-connected topology network in JLNU-500.



Fig. S5 (a) The layer is formed by  $Co_4O_2$  clusters and AIP<sup>2-</sup> ligands, (b) ball-and-stick representations of the 3D pillared-layer structure of JLNU-500.



Fig. S6 The FT-IR curve of as-synthesized JLNU-500 at room temperature.



Fig. S7 TGA curve of as-synthesized JLNU-500 under nitrogen gas atmosphere.

| Table S4 Comparison of | f different C | Co-containing | catalysts | towards | pollutants | for | PMS |
|------------------------|---------------|---------------|-----------|---------|------------|-----|-----|
|                        |               |               |           |         |            |     |     |

activation.

| Catalyst                                  | pollutant    | PMS      | Catalyst dose | Degradation       | Ref. |
|-------------------------------------------|--------------|----------|---------------|-------------------|------|
|                                           |              | dose     | (g/L)         | efficiency (>95%) |      |
| HCo <sub>3</sub> O <sub>4</sub> /C        | BPA, 87.6 μm | 325.3 μM | 0.1           | 97%, 4 min        | 5    |
| Co <sub>3</sub> O <sub>4</sub> /N/C       | Aniline, 20  | 0.15 g/L | 0.01          | 99.4%, 10 min     | 6    |
|                                           | ppm          |          |               |                   |      |
| Fe <sub>3</sub> Co <sub>7</sub> @C-650    | BPA, 20 mg/L | 0.2 g/L  | 0.1           | 98%, 30 min       | 7    |
| CoMn <sub>2</sub> O <sub>4</sub>          | SA, 10 mg/L  | 0.1 g/L  | 0.05          | 100%, 30 min      | 8    |
| Co <sub>3</sub> O <sub>4</sub> -palygors- | SMX, 30 μM   | 0.3 mM   | 0.125         | 100%, 3.5 min     | 9    |
| kite composites                           |              |          |               |                   |      |
| ZIF-67/PAN                                | AY, 500 mg/L | 0.5 g/L  | 0.233         | 95.1%, 10 min     | 10   |
| Co <sub>3</sub> O <sub>4</sub> -MC        | OTC, 40 μM   | 0.5 mM   | 0.2           | 100%, 12 min      | 11   |
| NiCo-LDH/10                               | RR-120, 0.1  | 3 mM     | 0.005         | 89%, 10 min       | 12   |
|                                           | mM           |          |               |                   |      |
| CuCo-MOF-74                               | MB, 0.2 mM   | 2.0 mM   | 0.05          | 100%, 30 min      | 13   |
| Co-BTC                                    | DBP, 0.018   | 1.62 mM  | 0.3           | 90%, 5 min        | 14   |
|                                           | mM           |          |               |                   |      |
| Co-MOF                                    | MO, 20 mg/L  | 1.0 mM   | 0.1           | 98.56%, 4.5 min   | 15   |
| JLNU-500                                  | RhB, 50 mg/L | 1.0 mM   | 0.1           | 100%, 6 min       | this |
|                                           |              |          |               |                   | work |

BPA, bisphenol A, SA, sulfanilamide, SMX, sulfamethoxazole, AY, acid yellow, OTC, oxytetracycline, RR-120, Reactive Red-120, MB, methylene blue, DBP, dibutyl phthalate, MO, methyl orange.



**Fig. S8** RhB degradation using **JLNU-500** and  $Co_3O_4$  under the same experimental conditions [RhB] = 50 mg/L, [PMS] = 1.0 mM, [**JLNU-500**] = 10 mg or  $[Co_3O_4] = 10 \text{ mg}$ , T = 20 °C, initial pH = 7.0.



**Fig. S9** MO degradation under different reaction conditions [MO] = 50 mg/L, [PMS] = 1.0 mM, [JLNU-500] = 10 mg, T = 20 °C, initial pH = 7.0.



Fig. S10 Effect of pH on the degradation removal of RhB using JLNU-500/PMS. [RhB] = 50 mg/L, [PMS] = 1.0 mM; [catalyst JLNU-500] = 10 mg; T = 20 °C.



Fig. S11 The PXRD pattern of catalyst JLNU-500 after being used for 4 cycles.



Fig. S12 Mass spectra of 74 in RhB degradation products.



Fig. S13 Mass spectra of 90 in RhB degradation products.



Fig. S14 Mass spectra of 110 in RhB degradation products.



Fig. S15 Mass spectra of 60 in RhB degradation products.



Fig. S16 Mass spectra of 331 in RhB degradation products.



Fig. S17 Mass spectra of 182 in RhB degradation products.



Fig. S18 Mass spectra of 318 in RhB degradation products.



Fig. S19 Mass spectra of 415 in RhB degradation products.

#### **References:**

- 1. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, Acta Cryst. A., 2015, **71**, 59-75.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- 3. G. M. Sheldrick, Acta Cryst. C., 2015, 71, 3-8.
- 4. A. Spek, Acta Cryst. D., 2009, 65, 148-155.
- M. A. N. Khan, P. K. Klu, C. Wang, W. Zhang, R. Luo, M. Zhang, J. Qi, X. Sun, L. Wang, J. Li, *Chem. Eng. J.*, 2019, 363, 234-246.
- Q. Huang, J. Zhang, Z. He, P. Shi, X. Qin, W. Yao, Chem. Eng. J., 2017, 313, 1088-1098.
- X. Li, A. I. Rykov, B. Zhang, Y. Zhang, J. Wang, Catal. Sci. Technol., 2016, 6, 7486-7494.
- C.-X. Li, C.-B. Chen, J.-Y. Lu, S. Cui, J. Li, H.-Q. Liu, W.-W. Li, F. Zhang, Chem. Eng. J., 2018, 337, 101-109.
- 9. Y. Yu, Y. Ji, J. Lu, X. Yin, Q. Zhou, Chem. Eng. J., 2021, 406, 126759.
- 10. C. Wang, H. Wang, R. Luo, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, *Chem. Eng. J.*, 2017, **330**, 262-271.
- Z. Li, M. Wang, C. Jin, J. Kang, J. Liu, H. Yang, Y. Zhang, Q. Pu, Y. Zhao, M. You, Z. Wu, *Chem. Eng. J.*, 2020, **392**, 123789.
- 12. R. Ramachandran, T. Sakthivel, M. Li, H. Shan, Z.-X. Xu, F. Wang, *Chemosphere*, 2021, **271**, 128509.
- H. Li, Z. Yang, S. Lu, L. Su, C. Wang, J. Huang, J. Zhou, J. Tang, M. Huang, Chemosphere, 2021, 273, 129643.
- H. Li, J. Wan, Y. Ma, Y. Wang, X. Chen, Z. Guan, J. Hazard. Mater., 2016, 318, 154-163.
- 15. W. Xie, Y. Yuan, W. Jiang, S.-R. Zhang, G.-J. Xu, Y.-H. Xu, Z.-M. Su, *CrystEngComm*, 2022, **24**, 6786-6792.