# **Electronic Supporting Information**

## Zero-Dimensional Organic-Inorganic Hybrid Manganese Bromide with Coexistence of Dielectric–Thermal Double Switches and Efficient Fluorescence

Ling-Kun Wu, <sup>a</sup> Qing-Hua Zou, <sup>a</sup> Hai-Quan Yao, <sup>a</sup> Heng-Yun Ye <sup>a</sup> and Jian-Rong Li\*<sup>a</sup>

\* Correspondence: Corresponding Author: Jian-Rong Li, jrli@fjirsm.ac.cn.

<sup>a</sup> Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.

## More characterizations



Fig. S1 The macroscopic shape of the single crystal of crystal 1.



Fig. S2 The powder X-ray diffraction (PXRD) patterns for 1.



Fig. S3 TG curve of (TEMA)<sub>2</sub>MnBr<sub>4</sub> in the temperature range of 300 – 900 K.



Fig. S4 Packing diagram of compound 1. The H atoms are omitted for clarity.



Fig. S5 Hydrogen bonding chain diagram of (TEMA)<sub>2</sub>MnBr<sub>4</sub>.



**Fig. S6** The 3D color mapping Hirshfield surface analysis of (TEMA)<sub>2</sub>MnBr<sub>4</sub> at 298 K showing (a) *di*, (b) *de*, (c) shape index, and (d) curvedness.

di is the distance from the Hirshfeld surface to the inner nearest nucleus, de is the distance from the Hirshfeld surface to the nearest nucleus off the surface.  $d_{norm}$  is defined as the sum of de and di, both normalized by the van der Waals radius ( $r^{vdw}$ ).



Fig. S7 2D Fingerprint plot (*di* vs *de*) of (TEMA)<sub>2</sub>MnBr<sub>4</sub> at 150 K.

 $d_{norm}$  is defined as the sum of *de* and *di*, both normalized by the van der Waals radius ( $r^{vdw}$ ). Blue indicates a small contribution to the surface, while red indicates the greatest contribution.



Fig. S8 The  $\varepsilon''$  of (TEMA)<sub>2</sub>MnBr<sub>4</sub> at different frequencies.



Fig. S9 The dielectric constant of (TEMA)<sub>2</sub>MnBr<sub>4</sub> at different frequencies.



**Fig. S10** (a) Schematic diagram of fast switching of thermally sensitive dielectric switching materials based on compound **1**, "t" represents the response time. (b) Schematic diagram of the integrated switch applied to the thermal sensor.



Fig. S11 UV absorption spectrum of (TEMA)<sub>2</sub>MnBr<sub>4</sub>.



**Fig. S12** (a) Excitation line of reference (279 nm) and emission spectrum of (TEMA)<sub>2</sub>MnBr<sub>4</sub> collected by an integrating sphere.



Fig. S13 The CIE diagram of (TEMA)<sub>2</sub>MnBr<sub>4</sub> under the excitation of 365 nm.

| (TEMA) <sub>2</sub> MnBr <sub>4</sub>    |                     |  |  |
|------------------------------------------|---------------------|--|--|
| T/K                                      | 150.00(10)          |  |  |
| Formula weight                           | 602.99              |  |  |
| Crystal system                           | Tetragonal          |  |  |
| Space group                              | $P\overline{4}2_1m$ |  |  |
| <i>a</i> / Å                             | 12.8275(5)          |  |  |
| b / Å                                    | 12.8275(5)          |  |  |
| <i>c</i> / Å                             | 14.1940(7)          |  |  |
| V / Å <sup>3</sup>                       | 2335.5(2)           |  |  |
| Ζ                                        | 4                   |  |  |
| λ                                        | 0.71073 Å           |  |  |
| $D_{ m calc}$ / g·cm <sup>-3</sup>       | 1.715               |  |  |
| $\mu$ / mm $^{-1}$                       | 7.406               |  |  |
| <i>F</i> (000)                           | 1180                |  |  |
| 2	heta range / °                         | 5.33 - 57.462       |  |  |
| Reflns collected                         | 10791               |  |  |
| Independent reflns $(R_{int})$           | 2718 (0.0407)       |  |  |
| No. of parameters                        | 129                 |  |  |
| $R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$ | 0.0296, 0.0612      |  |  |
| $R_1$ , $wR_2$ [all data]                | 0.0416, 0.0642      |  |  |
| GOF                                      | 1.062               |  |  |
| $\Delta  ho^{[c]}$ / e·Å <sup>-3</sup>   | 0.60, -0.62         |  |  |
| CCDC                                     | 2268961             |  |  |

Table S1 Crystal structure and refinement detail of (TEMA)<sub>2</sub>MnBr<sub>4</sub>.

<sup>[a]</sup>  $R_1 = \Sigma ||F_0| - |F_c|| / |F_0|$ ; <sup>[b]</sup>  $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2]^{1/2}$ ; <sup>[c]</sup> maximum and minimum residual electron density.

**Table S2** Selected hydrogen bonds data for the title compounds.

| Compound 1                          |        |                 |                 |        |  |  |  |
|-------------------------------------|--------|-----------------|-----------------|--------|--|--|--|
| D-H···A                             | d(D-H) | $d(H \cdots A)$ | $d(D \cdots A)$ | <(DHA) |  |  |  |
| $C(8)$ - $H(8A)$ ···B $r(3)^1$      | 0.99   | 2.84            | 3.60(2)         | 134.3  |  |  |  |
| $C(8)-H(8B)\cdots Br(1)^2$          | 0.99   | 3.17            | 3.896(19)       | 131.7  |  |  |  |
| $C(8)$ - $H(8B)$ ···· $Br(1)^3$     | 0.99   | 3.17            | 3.896(19)       | 131.7  |  |  |  |
| $C(3)$ - $H(3A)$ ···B $r(1)^4$      | 0.98   | 3.13            | 3.838(9)        | 130.4  |  |  |  |
| C(4)- $H(4A)$ ···Br(1) <sup>5</sup> | 0.99   | 2.99            | 3.835(6)        | 144.2  |  |  |  |
| C(7)- $H(7A)$ ····Br(3)             | 0.99   | 2.88            | 3.784(6)        | 151.9  |  |  |  |
| $C(7)$ - $H(7B)$ ···· $Br(2)^3$     | 0.99   | 3.08            | 3.889(6)        | 140.2  |  |  |  |

 $\overline{{}^{1}1\text{-}x, 1\text{-}y, +z; {}^{2}\text{-}y, +x, -z; {}^{3}\text{+}y, 1\text{-}x, 1\text{-}z; {}^{4}\text{+}x, +y, -1\text{+}z; {}^{5}1\text{-}y, +x, 1\text{-}z.}$ 

### **Table S3** Hirshfeld surface analysis of 1 at 150 K.

| Surface<br>Property | Range<br>(Minimum/Maximum) | Globularity<br>and<br>Asphericity | Surface volume (Å <sup>3</sup> )<br>and Area (Å <sup>2</sup> ) |
|---------------------|----------------------------|-----------------------------------|----------------------------------------------------------------|
| di                  | 1.0348/3.2508              |                                   |                                                                |
| de                  | 1.0375/3.0284              |                                   |                                                                |
| $d_{norm}$          | -0.1097/1.8713             | 0.622-0.143                       | 776.10 and 656.53                                              |
| Shape index         | 1.0000/-1.0000             |                                   |                                                                |
| Curvedness          | -4.0000/0.4000             |                                   |                                                                |

| Compounds                                          | Shortest Mn–Mn | PLQY (%) | Refs      |
|----------------------------------------------------|----------------|----------|-----------|
|                                                    | distance (Å)   |          |           |
| (DMA) <sub>2</sub> MnBr <sub>4</sub>               | 6.22, 6.85     | 7.8      | 1         |
| (PRD) <sub>2</sub> MnBr <sub>4</sub>               | 6.09, 6.30     | 16       | 2         |
| (Bu <sub>4</sub> N) <sub>2</sub> MnBr <sub>4</sub> | 8.95, 9.08     | 47       | 3         |
| (PRD2) <sub>2</sub> MnBr <sub>4</sub>              | 8.03, 8.19     | 51       | 4         |
| (EPY) <sub>2</sub> MnBr <sub>4</sub>               | 6.87, 9.76     | 63.92    | 5         |
| (DIPA) <sub>2</sub> MnBr <sub>4</sub>              | 8.85, 9.06     | 62       | 6         |
| (EMMIM) <sub>2</sub> MnBr <sub>4</sub>             | 8.58, 9.80     | 68.49    | 5         |
| (BMPR) <sub>2</sub> MnBr <sub>4</sub>              | 9.25, 10.24    | 75.5     | 5         |
| (TEMA) <sub>2</sub> MnBr <sub>4</sub>              | 9.07, 9.26     | 80.78    | This Wrok |
| (TMPEA) <sub>2</sub> MnBr <sub>4</sub>             | 8.64, 9.06     | 98       | 1         |

**Table S4** The separation distances (Å) of Mn<sup>...</sup>Mn for adjacent [MnBr<sub>4</sub>]<sup>2-</sup> tetrahedrons.

Calculation of  $\Delta S$  and N for compound **1**.

$$\Delta S = \int_{T_1}^{T_2} \frac{Q}{T} dT \approx \frac{\Delta H}{T_c} = \frac{27.26 J \cdot g^{-1} \times 602.99 g \cdot mol^{-1}}{344.37 K} = \frac{16437.50 J \cdot mol^{-1}}{344.37 K}$$
$$\approx 47.73 J \cdot mol^{-1} \cdot K^{-1}$$
$$\Delta S = R \ln N$$

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{47.73 \, J \cdot mol^{-1} \cdot K^{-1}}{8.314 \, J \cdot mol^{-1} \cdot K^{-1}}\right) = 5.74$$

#### References

- 1. L. Mao, P. Guo, S. Wang, A. K. Cheetham and R. Seshadri, J. Am. Chem. Soc., 2020, 142, 13582-13589.
- C. Jiang, H. Fu, Y. Han, D. Li, H. Lin, B. Li, X. Meng, H. Peng and J. Chu, *Cryst. Res. Technol.*, 2019, 54, 1800236.
- A. Jana, S. Zhumagali, Q. Ba, A. S. Nissimagoudar and K. S. Kim, *J. Mater. Chem. A*, 2019, 7, 26504-26512.
- 4. Y. X. Wu, C. F. Wang, H. H. Li, F. Jiang, C. Shi, H. Y. Ye and Y. Zhang, *Eur. J. Inorg. Chem.*, 2020, **2020**, 394-399.
- Y.-Y. Ma, Y.-R. Song, W.-J. Xu, Q.-Q. Zhong, H.-Q. Fu, X.-L. Liu, C.-Y. Yue and X.-W. Lei, J. Mater. Chem. C, 2021, 9, 9952-9961.
- C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang, H. Peng and C.-G. Duan, *Chem. Comm.*, 2017, 53, 5954-5957.