Electronic Supplementary Information

For

Fluorescence Wavelength Shift Combining with Light Scattering for Ratiometric Sensing of Chloride in the Serum based on CsPbBr₃@SiO₂ Perovskite Nanocrystals Composites Halide Exchanges

Peng Zhang^a, Liming Chen^b, Xiaoyan Cai^b, Binbin Luo^{*c}, Haini Chen^a, Tianju Chen^{*a}, Guoliang Chen^a, Feiming Li^{*a}

^aCollege of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China

^bZhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China

^cDepartment of Chemistry and Key Laboratory for Preparation and Application of Ordered

Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063,

China

Peng Zhang and Liming Chen contributed equally to this work

*Email: lfm1914@mnnu.edu.cn(Feiming Li), 874327120@qq.com(Tianju Chen)

Fluorescence Wavelength Shift Combining with Light Scattering for

Ratiometric Sensing of Chloride in the Serum based on

CsPbBr₃@SiO₂ Perovskite Nanocrystals Composites Halide Exchanges

Peng Zhang[†]^a, Liming Chen[†]^b, , Xiaoyan Cai^b, Tianju Chen^{*}^a, Haini Chen^a, Guoliang Chen^a and Feiming Li^{* a}

Figure S1. FTIR spectra of CsPbBr₃@SiO₂ PNCCs.

Figure S2. The XPS full spectrum of CsPbBr3@SiO₂ PNCCs.

Figure S3. Stability comparation between CsPbBr₃@SiO₂ PNCCs and CsPbBr₃ PNCs in ethanol according to the fluorescence intensity.

Table S1. The fitting parameters of the decay curves for the CsPbBr3@SiO2 PNCCswith the addition of different concentration of Cl⁻.

C _{Cl-} /mM	Wavelength /nm	$\tau_1/ns(A_1)$	$\tau_2/ns(A_2)$	$\tau_3/ns(A_3)$	$\tau_{avg}\!/\!ns$
0	512	0.99 (10.3%)	4.83 (24.5%)	30.33 (65.2%)	28.75
60	472	0.96 (17.5%)	4.64 (29.5%)	26.38 (53.0%)	24.18
120	457	1.03 (24.7%)	4.07 (38.0%)	19.13 (37.3%)	16.01
180	449	1.12 (20.3%)	3.79 (53.9%)	13.71 (25.7%)	9.72

Note: The PL decay curves were fitted using a triple-exponential function:

 $A(t) = A_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$

Where A and τ correspond to lifetime components and relative proportion of the triple-exponential function, respectively. t is the decay time. The average lifetime (τ) is calculated as:

$$\tau_{avg} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2) / (A_1\tau_1 + A_2\tau_2 + A_3\tau_3).$$