Fluorescence Wavelength Shift Combining with Light

 Scattering for Ratiometric Sensing of Chloride in the Serum based on $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2}$ Perovskite Nanocrystals Composites Halide ExchangesPeng Zhang ${ }^{\text {al }}$, Liming Chen ${ }^{\text {bp }}$, Xiaoyan Cai ${ }^{\text {b }}$, Binbin Luo* ${ }^{*}$, Haini Chen ${ }^{\text {a }}$, Tianju Chen*a, Guoliang Chen ${ }^{\text {a }}$, Feiming Li ${ }^{* a}$
${ }^{\text {a }}$ College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China
${ }^{\text {b }}$ Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
${ }^{c}$ Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
PPeng Zhang and Liming Chen contributed equally to this work
*Email: 1fm1914@mnnu.edu.cn(Feiming Li), 874327120@qq.com(Tianju Chen)

Fluorescence Wavelength Shift Combining with Light Scattering for Ratiometric Sensing of Chloride in the Serum based on $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2}$ Perovskite Nanocrystals Composites Halide Exchanges

[^0]
Supplemental Figures

Figure S1. FTIR spectra of $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2}$ PNCCs.

Figure S2. The XPS full spectrum of $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2}$ PNCCs.

Figure S3. Stability comparation between $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2} \mathrm{PNCCs}$ and $\mathrm{CsPbBr}_{3} \mathrm{PNCs}$ in ethanol according to the fluorescence intensity.

Table S1. The fitting parameters of the decay curves for the $\mathrm{CsPbBr}_{3} @ \mathrm{SiO}_{2}$ PNCCs with the addition of different concentration of Cl^{-}.

$\mathrm{C}_{\mathrm{Cl}}-\mathrm{mM}$	Wavelength $/ \mathrm{nm}$	$\tau_{1} / \mathrm{ns}\left(\mathrm{A}_{1}\right)$	$\tau_{2} / \mathrm{ns}\left(\mathrm{A}_{2}\right)$	$\tau_{3} / \mathrm{ns}\left(\mathrm{A}_{3}\right)$	$\tau_{\mathrm{avg}} / \mathrm{ns}$
0	512	$0.99(10.3 \%)$	$4.83(24.5 \%)$	$30.33(65.2 \%)$	28.75
60	472	$0.96(17.5 \%)$	$4.64(29.5 \%)$	$26.38(53.0 \%)$	24.18
120	457	$1.03(24.7 \%)$	$4.07(38.0 \%)$	$19.13(37.3 \%)$	16.01
180	449	$1.12(20.3 \%)$	$3.79(53.9 \%)$	$13.71(25.7 \%)$	9.72

Note: The PL decay curves were fitted using a triple-exponential function:
$\mathrm{A}(\mathrm{t})=\mathrm{A}_{0}+\mathrm{A}_{1} \exp \left(-\mathrm{t} / \tau_{1}\right)+\mathrm{A}_{2} \exp \left(-\mathrm{t} / \tau_{2}\right)+\mathrm{A}_{3} \exp \left(-\mathrm{t} / \tau_{3}\right)$
Where A and τ correspond to lifetime components and relative proportion of the triple-exponential function, respectively. t is the decay time. The average lifetime (τ) is calculated as:
$\tau_{\text {avg }}=\left(\mathrm{A}_{1} \tau_{1}{ }^{2}+\mathrm{A}_{2} \tau_{2}^{2}+\mathrm{A}_{3} \tau_{3}{ }^{2}\right) /\left(\mathrm{A}_{1} \tau_{1}+\mathrm{A}_{2} \tau_{2}+\mathrm{A}_{3} \tau_{3}\right)$.

[^0]: Peng Zhang \dagger^{a}, Liming Chen \dagger^{b}, , Xiaoyan Cai ${ }^{\text {b }}$, Tianju Chen*a, Haini Chen ${ }^{\text {a }}$, Guoliang Chen ${ }^{\text {a }}$ and Feiming Li*a

