SUPPLEMENTARY INFORMATION

Augmenting Cyan Emission in Vanadate Garnet *via* Dy³⁺Activation for Light Emitting Devices and Multi-Mode Optical Thermometry

Amrithakrishnan Bindhu^a, Jawahar I. Naseemabeevi^a, Subodh Ganesanpotti^a*

^aDepartment of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram,

Kerala - 695 581, India

Email: gsubodh@gmail.com, gsubodh@keralauniversity.ac.in

Host cation (CN)	Doped ion (CN)	$R_m(\text{\AA})$	R_d (Å)	D _r (%)
$Sr^{2+}(8)$	Dy ³⁺ (8)	1.26	1.027	18.5
Na ⁺ (8)	Dy ³⁺ (8)	1.18	1.027	12.9
$Mg^{2+}(6)$	Dy ³⁺ (8)	0.72	1.027	-42.6
V ⁵⁺ (4)	Dy ³⁺ (8)	0.355	1.027	-189

Table S1. The percentage difference of Ionic radii (D_r) between host cations and Dy^{3+} .

Table S2. Rietveld refinement and crystallographic parameters of $Sr_2NaMg_2V_3O_{12}$: 0.01 Dy^{3+} .

Formula		$Sr_{1.98}Na_{1.01}Dy_{0.01}Mg_2V_3O_{12}$						
Crystal system		Cubic						
Space group		$Ia\overline{3}d$ (230, O_h^{10})						
Cell Parameters		a=12.652(2) Å, V= 2025.34 Å ³						
Reliability factors		R_{wp} = 7.85%, R_p = 5.96 % and GOF= 1.64						
Atom	Site	Х	у	Z	Occupancy	B_{eq} (Å ²)		
Sr^{2+}	24c	0.375	0.5	0.25	0.65	0.009(8)		
Dy^{3+}	24c	0.375	0.5	0.25	0.0167	0.009(8)		
Na^+	24c	0.375	0.5	0.25	0.333	0.009(8)		
Mg^{2+}	16a	0.50	0.50	0	1	0.007(5)		
V^{5+}	24d	0.625	0.50	0.25	1	0.005(6)		
O ²⁻	96h	0.042(3)	0.048(8)	0.653(6)	1	0.009(8)		

Formula		$Sr_{1.94}Na_{1.03}Dy_{0.03}Mg_2V_3O_{12}$						
Crystal system		Cubic						
Space group		$Ia\overline{3}d$ (230, O_h^{10})						
Cell Parameters		a=12.648(4) Å, V= 2023.52 Å ³						
Reliability factors		R_{wp} = 5.23%, R_p = 3.98 % and GOF= 1.23						
Atom	Site	Х	У	Z	Occupancy	B_{eq} (Å ²)		
Sr^{2+}	24c	0.375	0.5	0.25	0.65	0.009(8)		
Dy^{3+}	24c	0.375	0.5	0.25	0.0167	0.009(8)		
Na^+	24c	0.375	0.5	0.25	0.333	0.009(8)		
Mg^{2+}	16a	0.50	0.50	0	1	0.007(5)		
V^{5+}	24d	0.625	0.50	0.25	1	0.005(6)		
O ²⁻	96h	0.042(3)	0.048(8)	0.653(4)	1	0.009(8)		

Table S3. Rietveld refinement and crystallographic parameters of $Sr_2NaMg_2V_3O_{12}$: 0.03 Dy^{3+} .

Table S4. Rietveld refinement and crystallographic parameters of Sr₂NaMg₂V₃O₁₂: 0.12 Dy³⁺.

Formula		$Sr_{1.76}Na_{1.12}Dy_{0.12}Mg_2V_3O_{12}$						
Crystal syste	m	Cubic						
Space group		$Ia\overline{\bf 3}d~(230, O_h{}^{10})$						
Cell Parameters		a=12.622(6) Å, V= 2011.15 Å ³						
Reliability factors		R_{wp} = 5.95%, R_p = 4.61 % and GOF= 1.26						
Atom	Site	Х	У	Z	Occupancy	B_{eq} (Å ²)		
Sr ²⁺	24c	0.375	0.5	0.25	0.65	0.009(8)		
Dy^{3+}	24c	0.375	0.5	0.25	0.0167	0.009(8)		
Na ⁺	24c	0.375	0.5	0.25	0.333	0.009(8)		
Mg^{2+}	16a	0.50	0.50	0	1	0.007(9)		
V^{5+}	24d	0.625	0.50	0.25	1	0.006(1)		
O ²⁻	96h	0.039(3)	0.051(4)	0.655(1)	1	0.009(8)		

Fig. S1. Rietveld refinement pattern of (a) SNMV: 0.01 Dy^{3+} and (b) SNMV: 0.12 Dy^{3+} .

Fig. S2. The crystal structure viewed along [111] axis in which green, cyan, and blue polyhedra represent AO₈ (A= Sr/Na/Dy), MgO₆, and VO₄ configuration and red spheres represent oxygen ions.

Fig. S3. The variation in the yellow to blue intensity ratio (Y/B) with concentration.

Fig. S4. The log(I/x)-log(x) plot for the transition of Dy^{3+} ions in $Sr_2NaMg_2V_3O_{12}$: Dy^{3+} phosphor.

Fig. S5. The Decay curves of $Sr_2NaMg_2V_3O_{12}$: xDy^{3+} (x= 0.01, 0.03, and 0.12) phosphors.

Fig. S6. Temperature-dependent Raman spectra of SNMV: 0.03 Dy³⁺ phosphor.

Fig. S7. CIE diagram showing the variation of emission color with temperature.

Fig. S8. Linear fit of the Arrhenius equation.