Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Prussian Blue Analogue Derived Hollow Metal Oxide Heterostructure for High-Performance Supercapacitor

Hui Ju^{a, b}, Qianqian Tang^a, Yong Xu^a, Xiaojing Bai^a, Chenjin Pu^a, Tongchen Liu^a, Shuxin Liu^{a, *}, Lin Zhang^b ^aCollege of Chemistry and Chemical Engineering, Mianyang Teachers' College, Mianyang, 621900, China. ^bResearch Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China.

***Corresponding author:** E-mail address: liushuxin88@126.com

NiHCC@CuHCC **CuHCC NiHCC** Figure S1 Photographs of CuHCC, NiHCC and NiHCC@CuHCC

Figure S2 The FESEM images of (A) CuHCC, (B_1) NiHCC and (C_1, D) NiHCC@CuHCC, the size distribution of (B_2) NiHCC and (C_2) NiHCC@CuHCC

Material	Specific capacitance $/ (F g^{-1})$	Rate performance/ $(\%)$	Cycling stability	Refs.
MnO_x	75.6 (0.1 A g^{-1})	23.8% (2 A g ⁻¹)	426% (500 cycles)	
$g-C_3N_4/CeO_2/CoFe_2O_4$	$255.5 (1 \text{ A g}^{-1})$	56.7%		2
WO ₃ (<i>a</i>)CuO	248.0 (1 A g ⁻¹)	58.8% (10 A g^{-1})	85.2% $(1500$ cycles)	3
Co ₃ O ₄	115.0 (1 A g ⁻¹)	65.2% (10 A g ⁻¹)	62.6% $(10,000$ cycles)	$\overline{4}$
$Co3O4$ microflowers	240.2 (0.625 A g^{-1})	$84.1\% (6.25 \text{ A g}^{-1})$	96.3% $(5,000$ cycles)	5
Cr_2O_3 nanoribbons	291 (0.25 A g^{-1})	35.4% (2 A g ⁻¹)	99.5% $(3000$ cycles)	6
$Co3O4$ nanocages	140.0 (10 A g^{-1})	49.5% (15 A g^{-1})		7
Cuo/NiO/Co ₃ O ₄	262.5 (1 A g ⁻¹)	60.3% (10 A g ⁻¹)	107.9% (3000 cycles)	This work

Table S1 Electrochemical performances of MOFs- derived metal oxides for SC electrodes

Figure S3 CV curves at various scan rates of 10-100 mV s⁻¹ of (A) CuO/Co₃O₄ and (B) NiO/Co₃O₄. (C) CV curves at various scan rates of $1-8$ mV s⁻¹ of CuO/NiO/Co₃O₄

Figure S4 (A) CV curves of NDGH at various scan rates from 10 to 100 mV s^{-1} , (B) GCD curves of NDGH at different current densities of $1-10$ A g^{-1} , (C) Cycling stability of NDGH (inset: CV curves of NDGH for the 1st and 2500th cycles)

Figure S5 (A) CV curves at different potential ranges at a scan rate of 20 mV $s⁻¹$. (B) GCD curves at different potential ranges at a current density of 1 A g^{-1}

References

- 1. L. D. Chen, Y. Q. Zheng and H. L. Zhu, *J. Mater. Sci.*, 2017, **53**, 1346-1355.
- 2. B. Chameh, N. Khosroshahi, M. Bakhtian, M. Moradi and V. Safarifard, *Ceram. Int.*, 2022, **48**, 22254-22265.
- 3. J. Tian, B. Lin, Y. Sun, X. Zhang and H. Yang, *Mater. Lett.*, 2017, **206**, 91-94.
- 4. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu and S. Qiu, *J. Mater. Chem. A*, 2015, **3**, 20145-20152.
- 5. G.-C. Li, X.-N. Hua, P.-F. Liu, Y.-X. Xie and L. Han, *Mater. Chem. Phys.*, 2015, **168**, 127-131.
- 6. S.Ullah, I. A. Khan, M. Choucair, A. Badshah, I. Khan and M. A.Nadeem, *Electrochim. Acta*, 2015, **171**, 142-149.
- 7. H. Zhang, B. Yan, C. Zhou, J. Wang, H. Duan, D. Zhang and H. Zhao, *Energy Fuels*, 2021, **32**, 16925-16932.
- 8. S. Zhao, H. Wu, Y. Li, Q. Li, J. Zhou, X. Yu, H. Chen, K. Tao and L. Han, *Inorg. Chem. Front.*, 2019, **6**, 1824-1830.
- 9. M. Huang, Y. Zhang, F. Li, L. Zhang, R. S. Ruoff, Z. Wen and Q. Liu, *Sci. Rep.-UK*, 2014, **4**, 3878.
- 10. G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu, L. Wang, X. Xia, W. Lei, S.-M. Chen, D. Mandler and Q. Hao, *Appl. Surf. Sci.*, 2019, **469**, 941-950.
- 11. T. Yao, Y. Li, D. Liu, Y. Gu, S. Qin, X. Guo, H. Guo, Y. Ding, Q. Liu, Q. Chen, J. Li and D. He, *J. Power Sources*, 2018, **379**, 167-173.
- 12. D. He, Y. Gao, Y. Yao, L. Wu, J. Zhang, Z. H. Huang and M. X. Wang, *Front. Chem.*, 2020, **8**, 1-11.
- 13. Y. Sun, Y. Cheng, K. He, A. Zhou and H. Duan, *RSC Adv.*, 2015, **5**, 10178-10186.
- 14. P. Wen, P. Gong, J. Sun, J. Wang and S. Yang, *J. Mater. Chem. A*, 2015, **3**, 13874-13883.
- 15. X. Wei, H. Peng, Y. Li, Y. Yang, S. Xiao, L. Peng, Y. Zhang and P. Xiao, *ChemSusChem*, 2018, **11**, 3167-3174.
- 16. S. Wu, W. Chen and L. Yan, *J. Mater. Chem. A*, 2014, **2**, 2765-2772.