Electronic Supplementary Information

An efficient LiSrGaF₆: Cr³⁺ fluoride phosphor with broadband NIR emission towards sunlight-like full-spectrum lighting

Di Wu^{a,b,c}, Yan Li^{a,d}, Yu Liao^{a,d}, Xixiang Pan^{a,c}, Songbin Liu^{a,d,e*}, Wanfang Zou^{a,d}, Jiaqing Peng ^{a,d,e*}, Xinyu Ye^{a,c,d,e*}

^a Faculty of Materials Metallurgy and Chemistry, Collage of Rare earth, Jiangxi University of Science and Technology, Ganzhou 341000, P.R.China

^b School of Materials Science and Engineering, Peking University, Beijing 100083, P.R.China

^c National Engineering Research Center for Ionic Rare Earth, Ganzhou, 341000, PR China

^d Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province, Ganzhou 341000, P.R.China

^e National Rare Earth Functional Materials Innovation Centre, Ganzhou, 341000, PR China, Ganzhou, 341000, P.R. China

* Corresponding authors: <u>songbliu@jxust.edu.cn</u> (S. Liu); <u>jiaqpeng@hotmail.com</u> (J. Peng); <u>ye_xin_yu@126.com</u> (X. Ye)

host.					
Formula	LiSrGa _{0.6} F ₆ : 0.4Cr ³⁺	LiSrGaF ₆			
Crystal system	Hexagonal	Hexagonal			
Space group	<i>P</i> -31 <i>c</i>	<i>P</i> -31 <i>c</i>			
$a(\text{\AA})$	5.1516(8)	5.1566			
$b(\text{\AA})$	5.1516(8)	5.1566			
$c(\text{\AA})$	10.3174(9)	10.3176			
$V(Å^3)$	237.14	237.59			
α, β, γ (deg.)	90, 90, 120	90, 90, 120			
Rwp(%)	5.71%	-			
<i>Rp(%)</i>	3.91%	-			
χ^2	4.687	-			

Table S1 Crystallographic data determined from the Rietveld refinement for LiSrGa_{0.6}F₆: 0.4Cr³⁺ and LiSrGaF₆

Table S2 The photoelectric efficiency of NIR phosphors.

Phosphor	Current (mA)	NIR output power (mW)	Photoelectric efficiency (%)	Reference
$Ga_{2-x}Sc_xO_3$: Cr^{3+}	350	66.09	6.57	[1]
LiScP ₂ O ₇ : Cr ³⁺ , Yb ³⁺	100	36	12	[2]
$Ca_3Sc_2Si_3O_{12}$: Cr^{3+}	520	109.9	3.8	[3]
$ScF_3: Cr^{3+}$	300	24.15	2.54	[4]
K ₃ AlF ₆ : Cr ³⁺	350	7	0.7	[5]
K ₃ GaF ₆ : Cr ³⁺	350	8.4	0.7	
$K_3ScF_6: Cr^{3+}$	300	75.69	7.955	[6]
LiCaAlF ₆ : Cr ³⁺	300	48.52	5.002	[7]
LiSrAlF ₆ : Cr ³⁺	300	54.68	5.468	
LiSrGaF ₆ : Cr ³⁺	350	120.01	8.96	This work

Fig. S1 The internal quantum efficiency and absorption efficiency of LiSrGa_{0.6}F₆: 0.4Cr³⁺ sample.

Fig. S2 (a) Fitted activation energy of $LiSrGa_{0.6}F_6$: 0.4 Cr^{3+} sample. (b) Configurational coordinate diagram of $LiSrGaF_6$: Cr^{3+} .

Reference:

 M.-H. Fang, K.-C. Chen, N. Majewska, T. Leśniewski, S. Mahlik, G. Leniec, S. M. Kaczmarek, C.-W. Yang, K.-M. Lu, H.-S. Sheu and R.-S. Liu, ACS Energy Lett., 2021, 6, 109-114.

[2] L. Yao, Q. Shao, S. Han, C. Liang, J. He and J. Jiang, Chem. Mater., 2020, 32, 2430-2439.

[3] Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang and J. Jiang, Light: Sci. Appl., 2020, 9, 86.

[4] Q. Lin, Q. Wang, M. Liao, M. Xiong, X. Feng, X. Zhang, H. Dong, D. Zhu, F. Wu and Z. Mu, *ACS Appl. Mater. Interfaces*, 2021, **13**, 18274-18282.

[5] C. Lee, Z. Bao, M.-H. Fang, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, M. G. Brik, Y.-T. Tsai, T.-L. Tsai and R.-S. Liu, *Inorg. Chem.*, 2020, **59**, 376-385.

[6] H. Yu, J. Chen, R. Mi, J. Yang and Y.-g. Liu, Chem. Eng. J., 2021, 417, 129271.

[7] D. Wu, L. Liu, H. Liang, H. Duan, W. Nie, J. Wang, J. Peng and X. Ye, Ceram. Int., 2022, 48, 387-396.