Vapochromic Behavior of a Gold(I)-Lead(II) complex as a VOC Sensor

Sonia Moreno, David Royo, Abdel G. El-Hachimi, María Rodríguez-Castillo, Miguel

Monge, M. Elena Olmos* and José M. López-de-Luzuriaga*

Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico-Tecnológico, 26006 – Logroño, Spain

Electronic Supplementary Information

I. Characterization of the complexes

	1. ¹ H NMR signal assignment	2
	2. IR spectra	2
	3. ¹ H NMR spectra (300 MHz, 298K)	4
	4. ¹⁹ F NMR spectra (282 MHz, 298K)	5
	5. Single crystal and powder X-ray diffraction analysis of compounds 2-5	7
	6. Powder X-ray diffraction analysis	10
	7. Lifetimes	17
II	. Computational studies	
	1. Model systems	24
	2. Population analysis	24

I. Characterization of the complexes

1. ¹H NMR signal assignment

Figure S1. ¹H NMR signal assignment of terpyridine ligand.

2. IR spectra

Figure S2. FT-IR spectrum of complex 2.

Figure S3. FT-IR spectrum of complex 3.

Figure S4. FT-IR spectrum of complex 4.

Figure S6. ¹H NMR spectrum of complex 3 in [D₆]-DMSO.

Figure S8. ¹⁹F NMR spectrum of complex 2 in [D₆]-DMSO.

-112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -16

Figure S9. ¹⁹F NMR spectrum of complex 3 in [D₆]-DMSO.

-112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -164

Figure S10. ¹⁹F NMR spectrum of complex 4 in $[D_6]$ -DMSO.

5. Single crystal analysis of compounds 2-4.

	2	3	4
Chemical Formula	$C_{39}H_{11}Au_{2}F_{20}N_{3}Pb\cdot 2(C_{2}H_{3}N)$	$C_{39}H_{11}Au_2F_{20}N_3Pb\cdot C_7H_8$	$C_{39}H_{11}Au_2F_{20}N_3Pb\cdot 2(C_4H_8O)$
Crystal habit	Yellow prism	Green prism	Yellow prism
Crystal size/mm	0.148x0.094x0.063	0.125x0.075x0.075	0.250x0.248x0.247
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	Сс	P-1
a/Å	13.3822(11)	11.7382(5)	9.4745(10)
b/Å	16.9843(16)	25.0335(13)	14.2971(15)
c/Å	20.4646(18)	15.6517(6)	17.8209(17)
α/°	69.099(3)	90	107.528(3)
β/°	77.706(4)	105.334(3)	94.633(3)
γ/°	88.931(4)	90	93.988(4)
V/ų	4237.3(7)	4435.5(3)	2283.2(4)
Z	4	4	2
D _c /g cm ⁻³	2.482	2.388	2.395
М	1584.74	1594.76	1646.84
F(000)	2920	2944	1532
T/ºC	-100	-100	-100
2θmax/°	52	51	56
μ(Mo- <i>K</i> α)/mm⁻¹	11.001	10.509	10.215
No. refl. Measured	134396	28760	48068
No. unique refl.	16682	7888	10904
R _{int}	0.0507	0.0902	0.0405
<i>R</i> [<i>F</i> >2σ(F)] ^[a]	0.0357	0.0435	0.0230
wR[F ² , all refl.] ^[b]	0.1024	0.0910	0.0462
No. of refl. Used [<i>F</i> >2σ(F)]	16682	7888	10904
No. of parameters	1271	645	670
No. of restrains	320	266	20
S [c]	1.080	1.002	1.059
Max. residual electron density/e∙Å ⁻³	3.579	1.035	0.81

 Table S1. Data collection and structure refinement details for 2-4.

Figure S11. Crystal structure of 2 with the acetonitrile molecules in red.

Figure S12. Crystal structure of **3** viewed down the crystallographic *x* axis with the toluene molecules in red.

Figure S13. Crystal structure of **4** viewed down the crystallographic *x* axis with the coordinated THF molecules in green and the non-coordinated THF molecules in red. Hydrogen atoms have been omitted for calriry.

Figure S14. Schematic of the reversibility of compounds 1-5 through vapours of the different solvents.

6. Powder X-ray diffraction analysis.

X-ray diffraction measurements were carried out at the X-ray Diffraction and Fluorescence Analysis Service of the General Research Support Service of the University of Zaragoza. The data have been collected with a diffractometer "D-Max Rigaku, Ru300", provided with a Cu rotating anode. The diffractometer is operated at 40Kv and 80 mA and a graphite monochromator is used to select the Cu K α radiation. Measurement conditions from 2theta 3° to 40° step=0.03 t=1s/step.

Figure S15. Theoretical (red) and experimental (black) X-ray powder pattern of complex 1.

Figure S16. Theoretical (red) and experimental (black) X-ray powder pattern of complex 2.

Figure S17. Theoretical (red) and experimental (black) X-ray powder pattern of complex 3.

Figure S18. Theoretical (red) and experimental (black) X-ray powder pattern of complex 4.

Figure S19. Theoretical (red) and experimental (black) X-ray powder pattern of complex 5.

Figure S20. X-ray diffraction spectra of powder obtained by treatment of compound **1** (red) with acetonitrile (compound **2**, orange), toluene (compound **3**, light green), tetrahydrofuran (compound **4**, pink) and benzonitrile (compound **5**, dark green) vapours.

Figure S21. Experimental X-ray powder pattern of complex 1 (black), complex 2 (red) and complex 2 after contact with methanol (blue).

Figure S22. Experimental X-ray powder pattern of complex 1 (black), complex 3 (red) and complex 3 after contact with methanol (blue).

Figure S23. Experimental X-ray powder pattern of complex 1 (black), complex 4 (red) and complex 4 after contact with methanol (blue).

Figure S24. Experimental X-ray powder pattern of complex 1 (black), complex 5 (red) and complex 5 after contact with methanol (blue).

Figure S25. X-ray powder diffraction spectra of the conversion of compounds 3, 4 and 5 to compound 2 upon exposure to acetonitrile vapours.

Figure S26. X-ray powder diffraction spectra of the conversion of compounds 2, 4 and 5 to compound 3 upon exposure to toluene vapours.

Figure S27. X-ray powder diffraction spectra of the conversion of compounds 2, 3 and 5 to compound 4 upon exposure to toluene vapours.

Figure S28. X-ray powder diffraction spectra of the conversion of compounds 2, 3 and 4 to compound 5 upon exposure to toluene vapours.

- 7. Lifetimes
- > Complex 2:

Emission centred at 550 nm, excitation nanoled of 370 nm:

Figure S29. Lifetime decay for complex 2 at room temperature.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	6.751E-7	1.243E-8	B1	1556.181	5.954128	68.15
τ2	1.963E-06	4.983E-08	B2	250.0792	2.838904	31.85
<τ>amp	0.853E-6					
Chisq	1.020		Α	140.8187		
Shift	0					

77 K

Emission centred at 580 nm, excitation of 480 nm:

Figure S30. Lifetime decay for complex 2 at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	1.214E-6	1.024E-8	B1	2.206E-1	1.785E-3	100.00
<τ>amp	1.214E-6	1.024E-8				
Chisq	1.129		Α	-7.617E-1		
Shift	1.474E-7					

> Complex 3:

RT

Emission centred at 770 nm, excitation nanoled of 560 nm:

Figure S31. Lifetime decay for complex 3 at room temperature.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	1.089E-7	1.105E-8	B1	605.4062	13.44573	12.45
τ2	2.676E-07	1.614E-09	B2	1732.089	6.953588	87.55
<τ>amp	0.226E-6					
Chisq	1.030		Α	73.77539		
Shift	0					

77 K

Emission centred at 880 nm, excitation of 760 nm:

Figure S32. Lifetime decay for complex 3 at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	1.734E-6	1.313E-8	B1	1.686E-1	1.184E-3	100.00
<τ>amp	1.734E-6	1.313E-8				
Chisq	1.343		Α	-1.713		
Shift	2.705E-7					

> Complex 4

Emission centred at 530 nm, excitation nanoled of 390 nm:

Figure S33. Lifetime decay for complex 4 at room temperature.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	4.419E-6	9.308E-8	B1	51.36509	4.808246	11.92
τ2	2.455E-06	4.740E-08	B2	683.2266	7.126466	88.08
<τ>amp	2.592E-6					
Chisq	1.038		Α	120.48		
Shift	0					

77 K

Emission centred at 550 nm, excitation of 425 nm:

Figure S34. Lifetime decay for complex 4 at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	4.021E-6	1.338E-8	B1	1.173E-1	4.345E-4	100.00
<τ>amp	4.021E-6	1.338E-8				
Chisq	1.130		Α	-2.427E-1		
Shift	3.495E-9					

> Complex 5

Emission centred at 780 nm, excitation nanoled of 495 nm:

Figure S35. Lifetime decay for complex 5 at room temperature.

	Value	Std Dev		Value	Std Dev	Rel %
τ1	1.955E-7	1.644E-8	B1	1567.938	21.10683	22.39
τ2	3.293E-07	2.235E-08	B2	3225.583	14.12141	77.61
<τ>amp	0.286E-6					
Chisq	0.995		Α	167.8747		
Shift	0					

II. Computational studies

1. Model systems

Figure S36. Representation of model systems 2a-4a.

2. Population analysis

Model system 2

Figure S37. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model 2a.

Orbital	Au	Pb	terpy	C ₆ F₅	CH₃CN
LUMO +1	4	8	80	0	0
LUMO	12	20	54	12	0
НОМО	62	10	2	24	0
HOMO -8	8	2	4	86	0
HOMO -9	4	0	8	86	0
HOMO -14	54	12	8	22	4

Table S2. Population analysis for model system **2a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)

Model system 3

Figure S38. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model 3a.

Orbital	Au	Pb	terpy	C_6F_5	Toluene
LUMO +4	19	31	35	16	0
LUMO +3	0	0	98	1	0
LUMO +2	0	0	98	2	0
LUMO +1	7	8	78	6	0
LUMO	8	12	72	9	0
НОМО	49	8	2	28	13

Table S3. Population analysis for model system **3a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)

Model system 4

Figure S39. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model 4a.

Orbital	Au	Pb	terpy	C ₆ F₅	THF
LUMO +3	0	1	97	2	0
LUMO +1	6	13	73	9	0
LUMO	8	13	70	8	0
номо	10	1	3	84	0
HOMO -1	29	4	3	62	2
HOMO -3	36	6	4	53	3
HOMO -5	40	7	3	43	3
HOMO -9	0	0	10	89	0
HOMO -19	3	0	78	20	0

Table S4. Population analysis for model system **4a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)