Vapochromic Behavior of a Gold(I)-Lead(II) complex as a VOC Sensor

Sonia Moreno, David Royo, Abdel G. El-Hachimi, María Rodríguez-Castillo, Miguel

Monge, M. Elena Olmos* and José M. López-de-Luzuriaga*

Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico-Tecnológico, 26006 – Logroño, Spain

Electronic Supplementary Information

I. Characterization of the complexes

I. Characterization of the complexes

1. ¹H NMR signal assignment

Figure S1. ¹H NMR signal assignment of terpyridine ligand.

2. IR spectra

Figure S2. FT-IR spectrum of complex **2**.

Figure S3. FT-IR spectrum of complex **3**.

Figure S4. FT-IR spectrum of complex **4**.

Figure S6. ¹H NMR spectrum of complex **3** in [D₆]-DMSO.

4. ¹⁹F NMR spectra (282 MHz, 298K)

Figure S8. ¹⁹F NMR spectrum of complex **2** in [D₆]-DMSO.

-112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -1

Figure S9. ¹⁹F NMR spectrum of complex **3** in [D₆]-DMSO.

 $-112 - 114 - 116 - 118 - 120 - 122 - 124 - 126 - 128 - 130 - 132 - 134 - 136 - 138 - 140 - 142 - 144 - 146 - 148 - 150 - 152 - 154 - 156 - 158 - 160 - 162 - 164 - 166$

Figure S10. ¹⁹F NMR spectrum of complex **4** in [D₆]-DMSO.

5. Single crystal analysis of compounds 2-4.

Table S1. Data collection and structure refinement details for **2-4**.

Figure S11. Crystal structure of **2** with the acetonitrile molecules in red.

Figure S12. Crystal structure of **3** viewed down the crystallographic *x* axis with the toluene molecules in red.

Figure S13. Crystal structure of **4** viewed down the crystallographic *x* axis with the coordinated THF molecules in green and the non-coordinated THF molecules in red. Hydrogen atoms have been omitted for calriry.

Figure S14. Schematic of the reversibility of compounds **1-5** through vapours of the different solvents.

6. Powder X-ray diffraction analysis.

X-ray diffraction measurements were carried out at the X-ray Diffraction and Fluorescence Analysis Service of the General Research Support Service of the University of Zaragoza. The data have been collected with a diffractometer "D-Max Rigaku, Ru300", provided with a Cu rotating anode. The diffractometer is operated at 40Kv and 80 mA and a graphite monochromator is used to select the Cu Kα radiation. Measurement conditions from 2theta 3º to 40º step=0.03 t=1s/step.

Figure S15. Theoretical (red) and experimental (black) X-ray powder pattern of complex **1**.

Figure S16. Theoretical (red) and experimental (black) X-ray powder pattern of complex **2**.

Figure S17. Theoretical (red) and experimental (black) X-ray powder pattern of complex **3**.

Figure S18. Theoretical (red) and experimental (black) X-ray powder pattern of complex **4**.

Figure S19. Theoretical (red) and experimental (black) X-ray powder pattern of complex **5**.

Figure S20. X-ray diffraction spectra of powder obtained by treatment of compound **1** (red) with acetonitrile (compound **2**, orange), toluene (compound **3**, light green), tetrahydrofuran (compound **4**, pink) and benzonitrile (compound **5**, dark green) vapours.

Figure S21. Experimental X-ray powder pattern of complex **1** (black), complex **2** (red) and complex **2** after contact with methanol (blue).

Figure S22. Experimental X-ray powder pattern of complex **1** (black), complex **3** (red) and complex **3** after contact with methanol (blue).

Figure S23. Experimental X-ray powder pattern of complex **1** (black), complex **4** (red) and complex **4** after contact with methanol (blue).

Figure S24. Experimental X-ray powder pattern of complex **1** (black), complex **5** (red) and complex **5** after contact with methanol (blue).

Figure S25. X-ray powder diffraction spectra of the conversion of compounds **3**, **4** and **5** to compound **2** upon exposure to acetonitrile vapours.

Figure S26. X-ray powder diffraction spectra of the conversion of compounds **2**, **4** and **5** to compound **3** upon exposure to toluene vapours.

Figure S27. X-ray powder diffraction spectra of the conversion of compounds **2**, **3** and **5** to compound **4** upon exposure to toluene vapours.

Figure S28. X-ray powder diffraction spectra of the conversion of compounds **2**, **3** and **4** to compound **5** upon exposure to toluene vapours.

- **7. Lifetimes**
- **Complex 2:**

Emission centred at 550 nm, excitation nanoled of 370 nm:

Figure S29. Lifetime decay for complex **2** at room temperature.

77 K

Emission centred at 580 nm, excitation of 480 nm:

Figure S30. Lifetime decay for complex **2** at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

Complex 3:

RT

Emission centred at 770 nm, excitation nanoled of 560 nm:

Figure S31. Lifetime decay for complex **3** at room temperature.

77 K

Emission centred at 880 nm, excitation of 760 nm:

Figure S32. Lifetime decay for complex **3** at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

Complex 4

Emission centred at 530 nm, excitation nanoled of 390 nm:

Figure S33. Lifetime decay for complex **4** at room temperature.

77 K

Emission centred at 550 nm, excitation of 425 nm:

Figure S34. Lifetime decay for complex **4** at 77 K. *IRF (Instrumental Response Function) is used to detect the scattered light from the sample.

Complex 5

Emission centred at 780 nm, excitation nanoled of 495 nm:

Figure S35. Lifetime decay for complex **5** at room temperature.

II. Computational studies

1. Model systems

Figure S36. Representation of model systems **2a-4a**.

2. Population analysis

Model system **2**

Figure S37. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model **2a**.

Orbital	Au	Pb	terpy	C_6F_5	CH ₃ CN
$LUMO + 1$	4	8	80	0	0
LUMO	12	20	54	12	0
HOMO	62	10	\mathcal{P}	24	0
HOMO-8	8	\mathcal{P}	4	86	0
HOMO-9	4	0	8	86	0
HOMO -14	54	12	8	22	4

Table S2. Population analysis for model system **2a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)

Model system **3**

Figure S38. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model **3a**.

Orbital	Au	Pb	terpy	C_6F_5	Toluene
$LUMO +4$	19	31	35	16	0
$LUMO + 3$	0	0	98	1	0
$LUMO + 2$	0	0	98	2	0
$LUMO + 1$	7	8	78	6	0
LUMO	8	12	72	9	0
HOMO	49	8	\mathfrak{p}	28	13

Table S3. Population analysis for model system **3a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)

Model system **4**

Figure S39. Comparison between solid-state UV-vis absorption spectra (black), theoretical singlet-singlet excitations (red) and theoretical singlet-triplet excitations (green) calculated from model **4a**.

Table S4. Population analysis for model system **4a**. Contribution from each part of the molecule to the orbitals involved in the most important transitions (%)