Supplementary material for

Crystal Water Intercalated Interlayer Expanded MoS₂ Nanosheets as

Cathode for Efficient Zinc-Ion Storage

Muruganandham Hariram^{*a*}, Manoj Kumar^{*a*}, Kamlendra Awasthi^{*a*}, Debasish Sarkar^{**a*}, Prashanth W. Menezes^{**bc*}

^{*a*} Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan-302017, India. E-mail: <u>deb.sarkar1985@gmail.com</u>, <u>debasish.phy@mnit.ac.in</u>

^b Material Chemistry Group for Thin Film Catalysis – CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany. E-mail: prashanth.menezes@helmholtz-berlin.de

^c Department of Chemistry, Technical University of Berlin, Straße des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany. E-mail: <u>prashanth.menezes@mailbox.tu-berlin.de</u>

Calculation details

(i) Segregation of Capacitive and Diffusive parts from CV:

To evaluate the charge storage mechanism of ZIBs, current (i) and scan rate (v) is analyzed from the CV curve by using the following reaction:

$$i = av^b \tag{S1}$$

Here a and b are variable parameters. The value of b can be calculated by the slope of log i versus log v plot, which provides the charge storage kinetics. If the value of b is 1, the capacitive process is dominating, while the diffusive process is dominating when b is 0.5. For segregating the capacitive and diffusive currents, the following formula is used.

$$i(V) = a_1 v + a_2 v^{\frac{1}{2}}$$
 (S2)

Here i and v are the current and scan rates. The values of a_1 and a_2 are calculated by finding the slope and intercept of the $i(V)/v^{1/2}$ versus the $v^{1/2}$ plot.

(ii) Calculation of diffusion co-efficient from GITT:

For GITT studies, the cell was charged/discharged for 8 mins and rested for 32 mins. The diffusion coefficient of Zn-ions (D_{Zn}) can be calculated by the following equation:

$$D_{Zn} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B A} \right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau} \right)^2$$
(S3)

Here, τ is the time of charging/discharging (s), m_B is the active mass loading (g), V_M is the molar volume of MoS₂ (cm³/mol), M_B is the molecular weight of MoS₂ (g/mol) and A is the electrode/electrolyte contact area (cm²). Moreover, ΔE_{τ} and ΔE_{S} are the variations of cell voltage and steady-state voltage, respectively.

(iii) Calculation of diffusion co-efficient from EIS:

 D_{Zn} can also be calculated using EIS spectra by using the equation S4. In the equation, R represents the gas constant (8.314 J/mol/K), T represents the absolute temperature (-273.15 K), A is the electrode/electrolyte contact area (cm²), n is the number of electrons transferred during the electrochemical process (1.18 in this system), F is the Faraday constant (96500 C/mol), C is the concentration of Zn (calculated to be 1.84×10^{-2} mol/cm³), and σ is the Warburg factor (slope of Z' vs. $\omega^{-1/2}$ plot)

$$D_{Zn} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(S4)

(iv) Calculation of Zn-ions concentration:

Unit cell volume of MoS₂ is determined by "a $(3.16 \text{ Å}) \times \text{b} (3.16 \text{ Å}) \times \text{c} (12.29 \text{ Å}) \times \sin 120^{\circ} = 106.28 \times 10^{-24} \text{ cm}^{3}$ ". 1 cm³ of MoS₂ have 1/106.28 × 10⁻²⁴ = 9.41 × 10²¹ unit cells. In our case, ZIB shows the maximum specific capacity of 197 mAh/g, which signifies 0.59 Zn²⁺ insertion in MoS₂ (Zn_{0.59}MoS₂). Each molecule of MoS₂ has 0.59 Zn ions and each unit cell contains 2 molecules. Therefore, 1 cm³ has (9.41 × 1021/6.02 × 1023) × 2 × 0.59 = 1.84 × 10⁻² mol Zn-ions.

Figure S1: EDX spectra of the synthesized MoS₂ nanostructures

Figure S2: XPS survey spectra of the as-synthesized water intercalated MoS_2 nanostructures

Figure S3: FTIR spectra of the synthesized MoS₂ nanostructures

Figure S4: (a) N_2 adsorption-desorption isotherm and (b) BJH pore-size distribution plots of the MoS₂ nanosheets

Figure S5: Specific capacity of the MoS₂ sample at different potential windows

Figure S6: Cycling study of MoS_2 nanostructures for 1000 GCD cycles measured at 2 A/g

S. No.	Cathode Material	Interlayer Spacing	Electrolyte	Voltage	Specific Capacity	Cyclic Retention	Ref.
1	MoS ₂	-	2 M ZnSO ₄	0.1-2 V	18 mAh/g at 0.05 A/g	-	1
2	MoS_2	7.3 Å	2 M ZnSO ₄	0.3-1.5 V	202.6 mAh/g at 0.1 A/g	98.6% after 600 cycles	2
3	MoS ₂ (~70% 1T)	-	3 M Zn(CF ₃ SO ₃) ₂	0.25–1.25 V	168 mAh/g at 0.1 A/g	98.1% after 400 cycles	3
4	MoS _{2-x} (S-vacancy)	6.86 Å	3 M Zn(CF ₃ SO ₃) ₂	0.25–1.25 V	138.6 mAh/g at 0.1 A/g	87.8% after 1000 cycles	4
5	N-MoS ₂	8.6 Å	3 M Zn(CF ₃ SO ₃) ₂	0.2-1.3 V	149.6 mAh/g at 0.1 A/g	89.1% after 1000 cycles	5
6	1T MoS ₂ @CC	6.7 Å	3 M Zn(CF ₃ SO ₃) ₂	0.25–1.25 V	198 mAh/g at 0.1 A/g	87.8% after 2000 cycles	6
7	MoS ₂ /CTAB	10 Å	3 M ZnSO ₄	0.2-1.3 V	181.8 mA/g at 0.1 A/g	~92.8% after 2100 cycles	7
8	MoS ₂ -H ₂ O	9.1 Å	3 M Zn(CF ₃ SO ₃) ₂	0.25-1.25	164.1 mAh/g at 0.1 A/g	83.1% after 100 cycles	8
9	MWCNTs@a morphous carbon@MoS ₂	8.8 Å	3 M PVA- Zn(CF ₃ SO ₃) ₂	0.13-1.2 V	181 mAh/g at 0.1 A/g	78% after 1000 cycles	9
10	Crystal water intercalated MoS ₂	7.9 Å	2 M ZnSO ₄	0.3-1.3 V	197 mAh/g at 0.1 A/g	55% after 1000 cycles	This work

Table S1: Some key literature on MoS_2 -based cathode materials for ZIBs

References

- W. Liu, J. Hao, C. Xu, J. Mou, L. Dong, F. Jiang, Z. Kang, J. Wu, B. Jiang and F. Kang, *Chem. Commun.*, 2017, **53**, 6872-6874.
- H. Li, Q. Yang, F. Mo, G. Liang, Z. Liu, Z. Tang, L. Ma, J. Liu, Z. Shi and C. Zhi, Energy Storage Mater., 2019, 19, 94-101.
- J. Liu, P. Xu, J. Liang, H. Liu, W. Peng, Y. Li, F. Zhang and X. Fan, *Chem. Eng. J.*, 2020, **389**, 124405.
- 4. W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu and Y. Wang, *Energy Storage Mater.*, 2019, **16**, 527-534.
- 5. Z. Sheng, P. Qi, Y. Lu, G. Liu, M. Chen, X. Gan, Y. Qin, K. Hao and Y. Tang, ACS Appl. Mater. Interfaces, 2021, 13, 34495-34506.
- J. Liu, N. Gong, W. Peng, Y. Li, F. Zhang and X. Fan, Chem. Eng. J., 2022, 428, 130981.
- Z. Yao, W. Zhang, X. Ren, Y. Yin, Y. Zhao, Z. Ren, Y. Sun, Q. Lei, J. Wang, L. Wang, T. Ji, P. Huai, W. Wen, X. Li, D. Zhu and R. Tai, *ACS Nano*, 2022, 16, 12095-12106.
- L. Liu, W. Yang, H. Chen, X. Chen, K. Zhang, Q. Zeng, S. Lei, J. Huang, S. Li and S. Peng, *Electrochim. Acta*, 2022, 410, 140016.
- F. Niu, Z. Bai, Y. Mao, S. Zhang, H. Yan, X. Xu, J. Chen and N. Wang, *Chem. Eng. J.*, 2023, 453, 139933.