Electronic Supplementary Material (ESI) for Dalton Transactions.

Supporting online information for

Generation of Ru (III)-hypochlorite with resemblance to heme dependent haloperoxidase enzyme \ddagger

Rakesh Kumar, ${ }^{\text {a }}$ Faiza Ahsan, ${ }^{\text {b }}$ Ayushi Awasthi, ${ }^{\text {a }}$ Marcel Swart ${ }^{\mathrm{b}, \mathrm{c}^{*}}$ and Apparao Draksharapu ${ }^{\mathrm{a},{ }^{*}}$
${ }^{\text {a }}$ Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (India). appud@iitk.ac.in
${ }^{\mathrm{b}}$ IQCC \& Departament de Química, Universitat de Girona, 17003 Girona, Spain.
${ }^{\text {c ICREA, 08010, Barcelona, Spain. marcel.swart@gmail.com }}$

Fig. S1: (A) UV/Vis absorption spectral changes upon the reaction of 0.5 mM 1 (red) in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 20 eq. $m \mathrm{mPBA}$ (no spectral changes occurred) followed by 140 eq. aqueous NaCl (at ca. 2000 s) at room temperature. Inset: The corresponding absorption changes at 550 nm .

Fig. S2: (A) Time-dependent absorption changes at 550 nm upon the reaction of 0.5 mM 1 in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(\mathrm{A})$ with different eq. $(10,20,30$, and 50$)$ of $m \mathrm{CPBA}$ and 140 eq. aqueous NaCl , and (B) with different eq. (35, 70, 140, 210, 280) of aqueous NaCl and 20 eq. mCPBA at room temperature.

Fig. S3: Positive mode ESI-mass data of 2, generated upon the reaction of $\mathbf{1}$ with 20 eq. of $m C P B A$ and 140 eq. of aqueous NaCl in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at room temperature.

Fig. S4: Time-dependent resonance Raman spectra (at $\lambda_{\text {exc }} 561 \mathrm{~nm}$) for the (A) formation and (B) decay of $\mathbf{2}$ in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ generated by adding 20 eq . of $m \mathrm{CPBA}$ and 140 eq . of aqueous NaCl to $\mathbf{1}$ at room temperature. \# Indicates solvent peak.

Fig. S5: (A) UV/Vis absorption spectra of 5 mM NaOCl (blue) and 0.75 mM mCPBA (red). (B) The reaction of m CPBA with 70 eq. aqueous NaCl in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}$ (3:1) at room temperature followed by UV/Vis absorption spectroscopy. Inset: The corresponding absorption changes at 300 nm .

Scheme S1: Synthetic procedure for MeTPEN ligand.

i) $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$, $60^{\circ} \mathrm{C}$, overnight ii) Sat. aq. KPF_{6}, $\mathrm{H}_{2} \mathrm{O}$			

Scheme S2: Synthetic procedure for $\left[R u\right.$ " $\left.(\mathrm{MeTPEN})\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(4)$.

Fig. S6: ${ }^{1} \mathrm{H}$ NMR spectrum of MeTPEN in CDCl_{3} at 400 MHz . (* peak for solvent)

Fig. S7: ${ }^{13} \mathrm{C}$ NMR spectrum of MeTPEN in CDCl_{3} at 100 MHz . (* peak for solvent)

Fig. S8: UV/Vis absorption spectra (A) 0.1 mM and (B) 0.5 mM of $4 \mathrm{in} \mathrm{CH}_{3} \mathrm{CN}$ at room temperature.

Fig. S9: Solvent subtracted resonance Raman spectrum of 0.5 mM 4 in acetonitrile at $\lambda_{\text {exc }}=$ 405 nm (red) and 473 nm (blue). "Indicate imperfect solvent subtraction.

Fig. S10: Positive mode ESI-mass spectrum of 4 in $\mathrm{CH}_{3} \mathrm{CN}$.

Fig. S11: X-ray crystal structure of $\left[\mathrm{Ru}^{\prime \prime}(\mathrm{MeTPEN})\left(\mathrm{NCCH}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ (4). Hydrogen atoms were omitted for clarity.

Table S1: Crystal data and structure refinement of 4.

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Ru}$
Formula weight	779.52
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	13.1578(15)
b/Å	11.6873(13)
c/Å	19.140(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	103.637(4)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2860.3(6)
Z	4
$\mathrm{\rho}_{\text {calcg }} / \mathrm{cm}^{3}$	1.810
μ / mm^{-1}	0.766
F(000)	1560.0
Crystal size/mm ${ }^{3}$	$0.19 \times 0.17 \times 0.16$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.878 to 56.698
Index ranges	$\begin{aligned} & -17 \leq h \leq 17,-15 \leq k \leq 15,-25 \leq 1 \leq \\ & 25 \end{aligned}$
Reflections collected	43525
Independent reflections	$7131\left[\mathrm{R}_{\text {int }}=0.1260, \mathrm{R}_{\text {sigma }}=0.0852\right]$
Data/restraints/parameters	7131/0/399
Goodness-of-fit on F^{2}	0.984
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0755, \mathrm{wR}_{2}=0.1900$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1349, \mathrm{wR}_{2}=0.2407$
Largest diff. peak/hole / e \AA^{-3}	1.26/-1.12

Table S2: Selected Bond lengths (A) of 1, 4 and bond distance comparison with $\left[\mathrm{Ru}^{\prime \prime}(\mathrm{TPA})\left(\mathrm{NCCH}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ and $\left[\mathrm{Ru} \mathrm{u}^{\prime \prime}(\mathrm{N} 4 \mathrm{Py})\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} .^{1,2}$

	1	4	[$\left.\mathrm{Ru}^{\prime \prime}(\mathrm{TPA})\left(\mathrm{NCCH}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}{ }^{\text {a }}$	
Atom	Length/Å	Length/Å	Length/Å	Length/Å
Ru- N_{py}	$\begin{aligned} & \hline 2.067(3) \\ & 2.060(3) \\ & 2.071(3) \end{aligned}$	$\begin{aligned} & 2.051(6) \\ & 2.066(6) \\ & 2.068(6) \end{aligned}$	$\begin{aligned} & \hline 2.062(4) \\ & 2.071(4) \\ & 2.056(4) \end{aligned}$	$\begin{aligned} & \hline 2.057(4) \\ & 2.052(4) \\ & 2.061(4) \\ & 2.060(5) \end{aligned}$
Ru-Namine	$\begin{aligned} & 2.069(3) \\ & 2.141(2) \end{aligned}$	$\begin{aligned} & 2.087(6) \\ & 2.079(6) \end{aligned}$	2.053(4)	1.967(5)
Ru- $\mathrm{N}_{\text {MecN }}$	2.030(3)	2.041(6)	$\begin{aligned} & 2.031(5) \\ & 2.037(5) \end{aligned}$	
Ru - $\mathrm{O}_{\text {water }}$				2.172(5)
Ru-N Navg	2.073	2.066	2.051	2.039

${ }^{\text {a }}$ TPA: tris(2-pyridylmethyl)amine;
${ }^{\text {b }} \mathrm{N} 4 \mathrm{Py}$: N,N-bis(2-pyridyl-methyl)-N-bis(2-pyridyl)methylamine)

Fig. S12: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 500 MHz . (*peak for solvent, \#peak for $\mathrm{H}_{2} \mathrm{O}$)

Fig. S13: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at 125 MHz . (*peak for solvent)

(B)

Fig. S14: (A) Solid-state FT-IR spectrum of 4 on KBr pellet. The band at $2270 \mathrm{~cm}^{-1}$ is originated from the bound acetonitrile ligand. (B) Computationally calculated IR spectrum of 4 and 2268 cm^{-1} band corresponds to the bound acetonitrile ligand.

Fig. S15: Cyclic voltammograms of 4 in $\mathrm{CH}_{3} \mathrm{CN}$ (red) and in 3 : $1 \mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$ (blue) at room temperature (scan rate $500 \mathrm{mV} \mathrm{s}^{-1}$).

Fig. S16: Scan rate (in V/s) dependent cyclic voltammograms of $4(A)$ in $\mathrm{CH}_{3} \mathrm{CN}$, and (B) in $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}(3: 1)$.

Fig. S17: (A) UV/Vis absorption spectral changes upon the reaction of 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 10 eq. HClO_{4} and 10 eq. aqueous NaOCl at room temperature give rise to 540 nm band. (B) The corresponding absorption changes at 540 nm . The intermediate persisted for 4.5 h under these conditions.

Fig. S18: Time-dependent absorption changes at 540 nm upon reaction of 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with different eq. $\left(5,10,20,30\right.$, and 40) of HClO_{4} and aqueous NaOCl at room temperature.

Fig. S19: Experimental (red) and simulated (blue) X-band EPR (9.45 GHz) spectrum of 5 (g_{2} $=2.32, \mathrm{~g}_{\mathrm{y}}=2.22$ and $\mathrm{g}_{\mathrm{x}}=1.86$) measured at 120 K ; Modulation amplitude 5 G ; Modulation frequency 100 KHz , and Attenuation 10 dB . Condition to generation 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with $10 \mathrm{eq} . \mathrm{HClO}_{4}$ and 10 eq. aqueous NaOCl at room temperature.

Fig. S20: Resonance Raman spectrum of 5 in MeCN : $\mathrm{H}_{2} \mathrm{O}$ (3:1) obtained at $\lambda_{\text {exc }} 561 \mathrm{~nm}$. \# Indicate solvent band. Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ with 10 eq. HClO_{4} and 10 eq. aqueous NaOCl at room temperature.

Fig. S21: Time-dependent resonance Raman spectra (at $\lambda_{\text {exc }} 561 \mathrm{~nm}$) of 5 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ generated by adding 20 eq. of $m C P B A$ and 140 eq. of aqueous NaCl to 4 at room temperature. \# Indicates solvent peak.

Fig. S22: UV/Vis absorption spectral changes upon the reaction of 0.5 mM 4 (Blue) in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ with 20 eq. $m \mathrm{CPBA}$ and 140 eq. aqueous NaCl at room temperature give rise to 540 nm band. Inset: The corresponding absorption changes at 540 nm with time.

Fig. S23: Positive mode ESI-mass data of 5, generated upon the reaction of 4 with 20 eq. of $m C P B A$ and 140 eq. of aqueous NaCl in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at room temperature.

Fig. S24: Time-dependent absorption changes at 540 nm upon reaction of 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$, (A) with different eq. $(10,20,30,50)$ of $m \mathrm{CPBA}$ and 140 eq. aqueous NaCl , and (B) with different eq. $(35,70,140,210)$ of aqueous NaCl and 20 eq. m CPBA at room temperature.

Fig. S25: Time-dependent absorption changes at 540 nm of $\mathbf{5}$, generated upon the reaction of 0.5 mM 4 with 20 eq. $m \mathrm{CPBA}$ and 140 eq. aqueous NaCl in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at room temperature. The intermediate persisted for 1.5 h under these conditions.

Fig. S26: Time-dependent resonance Raman spectra (at $\lambda_{\text {exc }} 561 \mathrm{~nm}$) for the (A) formation and (B) decay of 5 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ generated by the addition of 10 eq. of NaOCl and 10 eq. of HClO_{4} to 4 at room temperature. \# Indicates solvent peak.

Fig. S27: (A) Experimentally obtained UV/Vis absorption spectrum of $\mathbf{2}$ in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1)$. Conditions to generate 2: 0.5 mM 1 in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v})+20$ eq. $\mathrm{mCPBA}+140$ eq. aqueous NaCl at RT. (B) Computed absorption spectrum of $\mathbf{2}$.

Fig. S28: (A) Experimentally obtained UV/Vis absorption spectrum of 5 in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1)$. Conditions to generate 5: 0.5 mM 4 in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v})+20$ eq. $\mathrm{mCPBA}+140$ eq. aqueous NaCl at RT. (B) Computed absorption spectrum of 5 .

Fig. S29: (A) Experimentally obtained resonance Raman spectrum of $\mathbf{2}$ in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1)$ obtained at $\lambda_{\text {exc }} 561 \mathrm{~nm}$. \# Indicate solvent band. (B) Computed IR Spectrum of 2.

Fig. S30: (A) Experimentally obtained resonance Raman spectrum of 5 in $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(3: 1)$ obtained at $\lambda_{\text {exc }} 561 \mathrm{~nm}$. \# Indicate solvent band. (B) Computed IR Spectrum of 5.

Fig. S31: Decay of 5 followed at 540 nm in presence of various concentrations of phenol to give pseudo-first-order rate constants ($\mathrm{k}_{\mathrm{obs}}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of $\mathrm{k}_{\text {obs }}$ against the concentrations of phenol to obtain a second-order-rate constant ($\mathrm{k}_{2}=92.58 \mathrm{x}$ $10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl .

Fig. S32: Decay of $\mathbf{5}$ followed at 540 nm in presence of various concentrations of 4methoxyphenol to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of kobs against the concentrations of 4-methoxyphenol to obtain a second-orderrate constant ($\mathrm{k}_{2}=7.543 \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. m CPBA and 140 eq. aqueous NaCl .

Fig. S33: Decay of $\mathbf{5}$ followed at 540 nm in presence of various concentrations of p-cresol to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of $\mathrm{k}_{\text {obs }}$ against the concentrations of p-cresol to obtain a second-order-rate constant ($\mathrm{k}_{2}=1.88 \mathrm{M}^{-}$ ${ }^{1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20 \mathrm{eq} . \mathrm{mCPBA}$ and 140 eq . aqueous NaCl .

Fig. S34: Decay of $\mathbf{5}$ followed at 540 nm in presence of various concentrations of 4 -(tertbutyl)phenol to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of $\mathrm{k}_{\text {obs }}$ against the concentrations of 4-(tert-butyl)phenol to obtain a second-order-rate constant ($\mathrm{k}_{2}=1.362 \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. $m C P B A$ and 140 eq. aqueous NaCl .

Fig. S35: Decay of $\mathbf{5}$ followed at 540 nm in presence of various concentrations of 4chlorophenol to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of $k_{\text {obs }}$ against the concentrations of 4-chlorophenol to obtain a second-order-rate constant ($\mathrm{k}_{2}=719.7 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+$ 20 eq. mCPBA and 140 eq. aqueous NaCl .

Fig. S36: Decay of 5 followed at 540 nm in presence of various concentrations of 4hydroxybenzonitrile to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in 3:1 $\mathrm{CH}_{3} \mathrm{CN}$: $\mathrm{H}_{2} \mathrm{O}$ at 25 ${ }^{\circ} \mathrm{C}$. The plot of kobs against the concentrations of 4-hydroxybenzonitrile to obtain a second-order-rate constant ($\mathrm{k}_{2}=23.7 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl .

Fig. S37: Decay of $\mathbf{5}$ followed at 540 nm in presence of various concentrations of p nitrophenol to give pseudo-first-order rate constants ($\mathrm{k}_{\text {obs }}$) in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. The plot of $\mathrm{k}_{\text {obs }}$ against the concentrations of p-nitrophenol to obtain a second-order-rate constant ($\mathrm{k}_{2}=84.5 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$). Conditions to generate 5: 0.5 mM 4 in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. $m C P B A$ and 140 eq. aqueous NaCl .

Fig. S38: Product analysis of the reaction of 5 with 50 eq. 4-methoxyphenol by APCI-MS. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20 \mathrm{eq}$. mCPBA and 140 eq . aqueous NaCl at room temperature.
215.10

Fig. S39: Product analysis of the reaction of $\mathbf{5}$ with 50 eq. p-cresol by APCI-MS. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20 \mathrm{eq}$. mCPBA and 140 eq . aqueous NaCl at room temperature.
298.19

Fig. S40: Product analysis of the reaction of 5 with 50 eq. 4-(tert-butyl)phenol by APCI-MS. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S41: Product analysis of the reaction of 5 with 50 eq. phenol by APCI-MS. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S42: Product analysis of the reaction of 5 with 10 eq. 4-chlorophenol by $\mathrm{APCI}-\mathrm{MS}$. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig S43: Product analysis of the reaction of 5 with 10 eq. 4-hydroxybenzonitrile by APCI-MS. Conditions to generate 5: 2.0 mM 4 in 3:1 $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S44: Product analysis of the reaction of 5 with 10 eq. 4-nitrophenol by $\mathrm{APCI}-\mathrm{MS}$. Conditions to generate 5: 2.0 mM 4 in $3: 1 \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}+20$ eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

References:

1) R. Sharma, J. D. Knoll, P. D. Martin, I. Podgorski, C. Turro, J. J. Kodanko, Inorg. Chem., 2014, 53, 3272-3274.
2) S. Ohzu, T. Ishizuka, Y. Hirai, H. Jiang, M. Sakaguchi, T. Ogura, S. Fukuzumi, T. Kojima, Chem. Sci., 2012, 3, 3421-3431.
