Supporting online information for

Generation of Ru(III)-hypochlorite with resemblance to heme dependent haloperoxidase enzyme‡

Rakesh Kumar,^a Faiza Ahsan,^b Ayushi Awasthi,^a Marcel Swart^{b,c*} and Apparao Draksharapu^{a,*}

^a Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016 (India). <u>appud@iitk.ac.in</u>

^b IQCC & Departament de Química, Universitat de Girona, 17003 Girona, Spain.

^c ICREA, 08010, Barcelona, Spain. <u>marcel.swart@gmail.com</u>

Fig. S1: (A) UV/Vis absorption spectral changes upon the reaction of 0.5 mM **1** (red) in 3:1 CH₃CN:H₂O with 20 eq. *m*CPBA (no spectral changes occurred) followed by 140 eq. aqueous NaCl (at ca. 2000 s) at room temperature. Inset: The corresponding absorption changes at 550 nm.

Fig. S2: (A) Time-dependent absorption changes at 550 nm upon the reaction of 0.5 mM **1** in 3:1 CH₃CN:H₂O (A) with different eq. (10, 20, 30, and 50) of *m*CPBA and 140 eq. aqueous NaCl, and (B) with different eq. (35, 70, 140, 210, 280) of aqueous NaCl and 20 eq. *m*CPBA at room temperature.

Fig. S3: Positive mode ESI-mass data of **2**, generated upon the reaction of **1** with 20 eq. of *m*CPBA and 140 eq. of aqueous NaCl in 3:1 CH₃CN:H₂O at room temperature.

Fig. S4: Time-dependent resonance Raman spectra (at λ_{exc} 561 nm) for the (A) formation and (B) decay of **2** in 3:1 CH₃CN:H₂O generated by adding 20 eq. of *m*CPBA and 140 eq. of aqueous NaCl to **1** at room temperature. # Indicates solvent peak.

Fig. S5: (A) UV/Vis absorption spectra of 5 mM NaOCl (blue) and 0.75 mM *m*CPBA (red). (B) The reaction of *m*CPBA with 70 eq. aqueous NaCl in MeCN: H_2O (3:1) at room temperature followed by UV/Vis absorption spectroscopy. Inset: The corresponding absorption changes at 300 nm.

Scheme S1: Synthetic procedure for MeTPEN ligand.

Scheme S2: Synthetic procedure for [Ru^{II}(MeTPEN)(NCCH₃)](PF₆)₂ (**4**).

Fig. S7: ¹³C NMR spectrum of MeTPEN in CDCl₃ at 100 MHz. (* peak for solvent)

Fig. S8: UV/Vis absorption spectra (A) 0.1 mM and (B) 0.5 mM of 4 in CH_3CN at room temperature.

Fig. S9: Solvent subtracted resonance Raman spectrum of 0.5 mM **4** in acetonitrile at λ_{exc} = 405 nm (red) and 473 nm (blue). [#]Indicate imperfect solvent subtraction.

Fig. S10: Positive mode ESI-mass spectrum of 4 in CH₃CN.

Fig. S11: X-ray crystal structure of $[Ru^{II}(MeTPEN)(NCCH_3)](PF_6)_2$ (**4**). Hydrogen atoms were omitted for clarity.

Empirical formula	$C_{23}H_{28}F_{12}N_6P_2Ru$
Formula weight	779.52
Temperature/K	100
Crystal system	monoclinic
Space group	P21/c
a/Å	13.1578(15)
b/Å	11.6873(13)
c/Å	19.140(2)
α/°	90
β/°	103.637(4)
γ/°	90
Volume/ų	2860.3(6)
Z	4
$\rho_{calc}g/cm^3$	1.810
µ/mm ⁻¹	0.766
F(000)	1560.0
Crystal size/mm ³	$0.19 \times 0.17 \times 0.16$
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.878 to 56.698
Index ranges	-17 ≤ h ≤ 17, -15 ≤ k ≤ 15, -25 ≤ l ≤ 25
Reflections collected	43525
Independent reflections	7131 [R _{int} = 0.1260, R _{sigma} = 0.0852]
Data/restraints/parameters	7131/0/399
Goodness-of-fit on F ²	0.984
Final R indexes [l>=2σ (l)]	R ₁ = 0.0755, wR ₂ = 0.1900
Final R indexes [all data]	R ₁ = 0.1349, wR ₂ = 0.2407
Largest diff. peak/hole / e Å ⁻³	1.26/-1.12

 Table S1: Crystal data and structure refinement of 4.

Table	S2:	Selected	Bond	lengths	(Å)	of	1,	4	and	bond	distance	comparison	with
[Ru ^{II} (TPA)(NCCH ₃) ₂](PF ₆) ₂ and [Ru ^{II} (N4Py)(OH ₂)](PF ₆) ₂ . ^{1, 2}													

	1	4	[Ru ^{II} (TPA)(NCCH ₃) ₂](PF ₆) ₂ ^a	[Ru ^{II} (N4Py)(OH ₂)](PF ₆) ₂ ^b
Atom	Length/Å	Length/Å	Length/Å	Length/Å
Ru-N _{py}	2.067(3)	2.051(6)	2.062(4)	2.057(4)
	2.060(3)	2.066(6)	2.071(4)	2.052(4)
	2.071(3)	2.068(6)	2.056(4)	2.061(4)
				2.060(5)
Ru-N _{amine}	2.069(3)	2.087(6)	2.053(4)	1.967(5)
	2.141(2)	2.079(6)		
Ru-N _{MeCN}	2.030(3)	2.041(6)	2.031(5)	
			2.037(5)	
Ru-O _{water}				2.172(5)
Ru-N _{Avg}	2.073	2.066	2.051	2.039

^a TPA: tris(2-pyridylmethyl)amine;

^b N4Py: N,N-bis(2-pyridyl-methyl)-N-bis(2-pyridyl)methylamine)

Fig. S12: ¹H NMR spectrum of 4 in CD₃CN at 500 MHz. (*peak for solvent, *peak for H₂O)

Fig. S13: ¹³C NMR spectrum of 4 in CD₃CN at 125 MHz. (*peak for solvent)

Fig. S14: (A) Solid-state FT-IR spectrum of **4** on KBr pellet. The band at 2270 cm⁻¹ is originated from the bound acetonitrile ligand. (B) Computationally calculated IR spectrum of **4** and 2268 cm⁻¹ band corresponds to the bound acetonitrile ligand.

Fig. S15: Cyclic voltammograms of **4** in CH₃CN (red) and in $3 : 1 H_2O$:CH₃CN (blue) at room temperature (scan rate 500 mV s⁻¹).

Fig. S16: Scan rate (in V/s) dependent cyclic voltammograms of **4** (A) in CH₃CN, and (B) in H₂O:CH₃CN (3:1).

Fig. S17: (A) UV/Vis absorption spectral changes upon the reaction of 0.5 mM **4** in 3:1 $CH_3CN:H_2O$ with 10 eq. $HClO_4$ and 10 eq. aqueous NaOCl at room temperature give rise to 540 nm band. (B) The corresponding absorption changes at 540 nm. The intermediate persisted for 4.5 h under these conditions.

Fig. S18: Time-dependent absorption changes at 540 nm upon reaction of 0.5 mM **4** in 3:1 $CH_3CN:H_2O$ with different eq. (5, 10, 20, 30, and 40) of $HClO_4$ and aqueous NaOCl at room temperature.

Fig. S19: Experimental (red) and simulated (blue) X-band EPR (9.45 GHz) spectrum of **5** ($g_z = 2.32$, $g_y = 2.22$ and $g_x = 1.86$) measured at 120 K; Modulation amplitude 5 G; Modulation frequency 100 KHz, and Attenuation 10 dB. *Condition to generation* **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O with 10 eq. HClO₄ and 10 eq. aqueous NaOCl at room temperature.

Fig. S20: Resonance Raman spectrum of **5** in MeCN: H₂O (3:1) obtained at λ_{exc} 561 nm. # Indicate solvent band. *Conditions to generate* **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O with 10 eq. HClO₄ and 10 eq. aqueous NaOCI at room temperature.

Fig. S21: Time-dependent resonance Raman spectra (at λ_{exc} 561 nm) of **5** in 3:1 CH₃CN:H₂O generated by adding 20 eq. of *m*CPBA and 140 eq. of aqueous NaCl to **4** at room temperature. # Indicates solvent peak.

Fig. S22: UV/Vis absorption spectral changes upon the reaction of 0.5 mM **4** (Blue) in 3:1 $CH_3CN:H_2O$ with 20 eq. *m*CPBA and 140 eq. aqueous NaCl at room temperature give rise to 540 nm band. Inset: The corresponding absorption changes at 540 nm with time.

Fig. S23: Positive mode ESI-mass data of **5**, generated upon the reaction of **4** with 20 eq. of *m*CPBA and 140 eq. of aqueous NaCl in $3:1 \text{ CH}_3\text{CN}:\text{H}_2\text{O}$ at room temperature.

Fig. S24: Time-dependent absorption changes at 540 nm upon reaction of 0.5 mM **4** in 3:1 CH₃CN:H₂O, (A) with different eq. (10, 20, 30, 50) of *m*CPBA and 140 eq. aqueous NaCl, and (B) with different eq. (35, 70, 140, 210) of aqueous NaCl and 20 eq. *m*CPBA at room temperature.

Fig. S25: Time-dependent absorption changes at 540 nm of **5**, generated upon the reaction of 0.5 mM **4** with 20 eq. *m*CPBA and 140 eq. aqueous NaCl in 3:1 CH₃CN:H₂O at room temperature. The intermediate persisted for 1.5 h under these conditions.

Fig. S26: Time-dependent resonance Raman spectra (at λ_{exc} 561 nm) for the (A) formation and (B) decay of **5** in 3:1 CH₃CN:H₂O generated by the addition of 10 eq. of NaOCI and 10 eq. of HClO₄ to **4** at room temperature. # Indicates solvent peak.

Fig. S27: (A) Experimentally obtained UV/Vis absorption spectrum of **2** in MeCN:H₂O (3:1). Conditions to generate **2**: 0.5 mM **1** in MeCN:H₂O (3:1 v/v) + 20 eq. mCPBA + 140 eq. aqueous NaCl at RT. (B) Computed absorption spectrum of **2**.

Fig. S28: (A) Experimentally obtained UV/Vis absorption spectrum of **5** in MeCN:H₂O (3:1). Conditions to generate **5**: 0.5 mM **4** in MeCN:H₂O (3:1 v/v) + 20 eq. mCPBA + 140 eq. aqueous NaCl at RT. (B) Computed absorption spectrum of **5**.

Fig. S29: (A) Experimentally obtained resonance Raman spectrum of **2** in MeCN:H₂O (3:1) obtained at λ_{exc} 561 nm. # Indicate solvent band. (B) Computed IR Spectrum of **2**.

Fig. S30: (A) Experimentally obtained resonance Raman spectrum of **5** in MeCN:H₂O (3:1) obtained at λ_{exc} 561 nm. # Indicate solvent band. (B) Computed IR Spectrum of **5**.

Fig. S31: Decay of **5** followed at 540 nm in presence of various concentrations of phenol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of phenol to obtain a second-order-rate constant (k_2 = 92.58 x 10⁻² M⁻¹s⁻¹). Conditions to generate **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S32: Decay of **5** followed at 540 nm in presence of various concentrations of 4methoxyphenol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of 4-methoxyphenol to obtain a second-orderrate constant (k_2 = 7.543 M⁻¹s⁻¹). *Conditions to generate* **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S33: Decay of **5** followed at 540 nm in presence of various concentrations of *p*-cresol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of *p*-cresol to obtain a second-order-rate constant (k_2 = 1.88 M⁻¹s⁻¹). Conditions to generate **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S34: Decay of **5** followed at 540 nm in presence of various concentrations of 4-(*tert*-butyl)phenol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of 4-(*tert*-butyl)phenol to obtain a second-order-rate constant ($k_2 = 1.362 \text{ M}^{-1}\text{s}^{-1}$). *Conditions to generate* **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S35: Decay of **5** followed at 540 nm in presence of various concentrations of 4chlorophenol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of 4-chlorophenol to obtain a second-order-rate constant (k_2 = 719.7 x 10⁻³ M⁻¹s⁻¹). *Conditions to generate* **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S36: Decay of **5** followed at 540 nm in presence of various concentrations of 4hydroxybenzonitrile to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of 4-hydroxybenzonitrile to obtain a secondorder-rate constant ($k_2 = 23.7 \times 10^{-2} \text{ M}^{-1}\text{s}^{-1}$). Conditions to generate **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S37: Decay of **5** followed at 540 nm in presence of various concentrations of *p*-nitrophenol to give pseudo-first-order rate constants (k_{obs}) in 3:1 CH₃CN: H₂O at 25 °C. The plot of k_{obs} against the concentrations of *p*-nitrophenol to obtain a second-order-rate constant ($k_2 = 84.5 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$). Conditions to generate **5**: 0.5 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl.

Fig. S38: Product analysis of the reaction of **5** with 50 eq. 4-methoxyphenol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S39: Product analysis of the reaction of **5** with 50 eq. *p*-cresol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S40: Product analysis of the reaction of **5** with 50 eq. 4-(*tert*-butyl)phenol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S41: Product analysis of the reaction of **5** with 50 eq. phenol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S42: Product analysis of the reaction of **5** with 10 eq. 4-chlorophenol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig S43: Product analysis of the reaction of **5** with 10 eq. 4-hydroxybenzonitrile by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

Fig. S44: Product analysis of the reaction of **5** with 10 eq. 4-nitrophenol by APCI-MS. Conditions to generate **5**: 2.0 mM **4** in 3:1 CH₃CN:H₂O + 20 eq. mCPBA and 140 eq. aqueous NaCl at room temperature.

References:

¹⁾ R. Sharma, J. D. Knoll, P. D. Martin, I. Podgorski, C. Turro, J. J. Kodanko, *Inorg. Chem.*, 2014, **53**, 3272–3274.

²⁾ S. Ohzu, T. Ishizuka, Y. Hirai, H. Jiang, M. Sakaguchi, T. Ogura, S. Fukuzumi, T. Kojima, *Chem. Sci.*, 2012, **3**, 3421-3431.