Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

G-quadruplex DNA binding properties of novel nickel Schiff base complexes with four pendant groups

Nawal Assadawi,^{a,b} Christopher Richardson^{a,b} and Stephen Ralph^{a,b}

 ^a School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
 ^b Molecular Horizons, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia

E-mail: sralph@uow.edu.au

Identification code	(5)	(9)	
Empirical formula	C _{48.5} ClH ₆₉ N ₆ NiO ₇	C ₄₄ H ₆₂ N ₆ NiO ₁₂	
Formula weight	942.25	925.70	
Temperature/K	150.00(10)	150.00(10)	
Crystal system	Triclinic	Monoclinic	
Space group	<i>P</i> -1	C2/c	
a/Å	11.7197(8)	30.6127(5)	
b/Å	12.5847(8)	15.8401(3)	
c/Å	16.6523(10)	9.8494(2)	
α/°	101.829(6)	90	
β/°	96.030(5)	96.209(2)	
γ/°	97.639(6)	90	
Volume/Å ³	2360.3(3)	4748.04(15)	
Z	2	4	
$\rho_{calc}g/cm^3$	1.326	1.295	
µ/mm ⁻¹	0.525	0.474	
F(000)	1006.0	1968.0	
Crystal size/mm ³	$0.51 \times 0.22 \times 0.03$	0.34 imes 0.21 imes 0.06	
Radiation	Mo Kα (λ = 0.71073)	$MoK\alpha \ (\lambda = 0.71073)$	
2Θ range for data collection/°	3.718 to 57.396	4.768 to 59.15	
Index ranges	$-15 \le h \le 15, -17 \le k \le 16, -22 \le l \le 22$	$-42 \le h \le 42, -22 \le k \le 21, -13 \le l \le 13$	
Reflections collected	55431	64511	
Independent reflections	11983 [$R_{int} = 0.0589, R_{sigma} = 0.0567$]	$6653 [R_{int} = 0.0328, R_{sigma} = 0.0214]$	
Data/restraints/parameters	11983/0/560	6653/0/288	
Goodness-of-fit on F ²	1.058	1.050	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0437, wR_2 = 0.0990$	$R_1 = 0.0348, wR_2 = 0.0989$	
Final R indexes [all data]	$R_1 = 0.0681, wR_2 = 0.1076$	$R_1 = 0.0432, wR_2 = 0.1028$	
Largest diff. peak/hole / e Å ⁻³	0.42/-0.71	0.52/-0.65	
CCDC	2271794	2271795	

 Table S1: Crystal data and structure refinement for (5) and (9).

Table S2: Binding free energies obtained from docking studies performed using nickelSchiff base complexes and either 1KF1 or 1KBD.

Complex	1KF1(qDNA)		1KBD (dsDNA)	
	ΔG	Binding mode ^b	ΔG	Binding
	(kcal/mol) ^a		(kcal/mol) ^a	mode ^b
(5)	-9.64 ± 0.05	Top, end	-8.8 ± 0.10	Minor groove
		stacking		
(9)	-9.86 ± 0.05	Top, end	-8.78 ± 0.08	Minor groove
		stacking		
(10)	-9.42 ± 0.04	Top, end	-8.3 ± 0.20	Minor groove
		stacking		

 $^{\rm a}$ Average values of ΔG with standard errors obtained from the top five docking scores.

 $^{\rm b}$ "Top" or "Bottom" indicates which terminal G-tetrad was the preferred binding site.

Figure S1: (a) Additional illustrations of the molecular structure of **(9)**. (a) Asymmetric unit with displacement ellipsoids set to 50%. (b) Complex together with locations of both partial water molecules.

Figure S2: Negative ion ESI mass spectra of solutions containing different nickel Schiff base complexes and D2 at a 6:1 ratio. \bullet = Free D2; \Box = [D2 + 1(Ni)]; \blacksquare = [D2 + 2(Ni)]; \blacklozenge = [D2 + 3(Ni)]; \checkmark = [D2 + 4(Ni)]; \bigcirc = [D2 + 5(Ni)].

Figure S3: Negative ion ESI mass spectra of solutions containing different nickel Schiff base complexes and Q4 at a 6:1 ratio. \bullet = Free Q4; \Box = [Q4 + 1(Ni)]; \blacksquare = [Q4 + 2(Ni)]; \blacklozenge = [Q4 + 3(Ni)]; \checkmark = [Q4 + 4(Ni)]; \bigcirc = [Q4 + 5(Ni)].

Figure S4: Negative ion ESI mass spectra of solutions containing different nickel Schiff base complexes and Q1 at a 6:1 ratio. \bullet = Free Q1; \Box = [Q1 + 1(Ni)]; \blacksquare = [Q1 + 2(Ni)]; \blacklozenge = [Q1 + 3(Ni)]; X = [Q1 + 4(Ni)]; \bigcirc = [Q1 + 5(Ni)].

Figure S5: Circular dichroism spectra of solutions containing varying ratios of (**9**) and different DNA molecules: (a) Parallel Q1; (b) Parallel c-kit1; (c) Anti-parallel Q1; (d) Parallel Q4; (e) Hybrid Q1 and (f) D2.

Figure S6: Circular dichroism spectra of solutions containing varying ratios of **(5)** and different DNA molecules: (a) Parallel Q1; (b) Parallel c-kit1; (c) Anti-parallel Q1; (d) Parallel Q4; (e) Hybrid Q1 and (f) D2.

Figure S7: Results obtained from FRET melting assays performed using anti-parallel F21T and increasing concentrations of **(5)**.

Figure S8: Results from an FID assay performed by adding increasing amounts of (**10**) to a solution containing thiazole orange and parallel Q4. The inset shows a Stern-Volmer plot derived from the data, which was then used to determine the DC_{50} for the nickel complex.