Lampang, Thailand

Supplementary Information

Selective Copper-Catalysed Atom Transfer Radical Addition (ATRA) in Water under Environmentally-Benign Condition

Nutchanikan Phiromphu,^a Methasit Juthathan,^a Pattira Suktanarak,^b Mongkol Sukwattanasinitt,^a Thawatchai Tuntulani,^a and Pannee Leeladee^{*a}

 [a] Dr. Nutchanikan Phiromphu, Methasit Juthathan, Prof. Dr. Mongkol Sukwattanasinitt, Prof. Dr. Thawatchai Tuntulani, Assist. Prof. Dr. Pannee Leeladee
 Department of Chemistry, Faculty of Science, Chulalongkorn University
 Bangkok, Thailand.
 E-mail: pannee.l@chula.ac.th
 [b] Dr. Pattira Suktanarak
 Faculty of Sport and Health Sciences, Thailand National Sports University Lampang Campus

Table of Contents

Synthesis and characterization	3
Product analysis of catalytic ATRA reaction in aqueous dispersed system	6
Comparison of catalytic performance of various copper catalysts for ATRA	14
Determination of droplet/particle size	16

Synthesis and characterization

I) Synthesis of 2,2'-dipicolylamine (DPA). The suspension of anhydrous MgSO₄ (2.78 g, 23.1 mmol) in CH₂Cl₂ (3.80 mL) was added 2-pyridinecarboxaldehyde (0.50 g, 4.60 mmol) and 2(aminomethyl)pyridine (0.50 g, 4.60 mmol). The mixture was stirred for 3 h at room temperature under N₂. After that, the suspension was filtered, and solvent in the filtrate was removed under vacuum to obtain a yellow oil product. The product was redissolved in CH₃CN (12 mL) and cooled to -5°C for 15 min. NaBH₄ was slowly added in the solution and stirred for 18 h at room temperature. The reaction was quenched with conc. HCl (7.70 mL) and heated at 60°C for 2 h to give the white precipitates in the yellow solution. The white solid was filtered out, and solvent in the filtrate was removed under vacuum. The crude product was redissolved in H₂O. To the aqueous solution was added NaOH pellets (3.30 g, 82.5 mmol) and the mixture was stirred for 15 min. After that, the solution was extracted with diethyl ether (3 x 200 mL) and dried under vacuum to obtain the yellow oil product (0.73 g, 80%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.49 (m, 2H, ArH), 7.50 (m, 2H, ArH), 7.23 (d, 2H, J = 8.0 Hz, ArH), 7.01 (m, 2H, ArH), 3.84 (s, 4H, -CH₂-).

II) Synthesis of 9-[(2,2'-dipicolylamino)methyl]anthracene (ADPA). The solution of 9-(chloromethyl)anthracene (1.00 g, 4.40 mmol), 2,2'-dipicolylamine (1.05 g, 5.20 mmol) and K₂CO₃ (2.43 g, 1.70 mmol) in anhydrous DMF (6.8 mL) was slowly added a solution of KI (0.73 g, 4.40 mmol) in DMF (3.6 mL). The reaction mixture was stirred at room temperature over 1 h, after which the solution was added 1 M HCl and washed with EtOAc. The aqueous solution was then alkalized with 4 M NaOH and extracted with EtOAc: THF (1:1). The combined organic layers were washed with H₂O and brine solution, followed by drying over MgSO₄, and the solvent was removed under reduced pressure. Recrystallization in MeOH: Et₂O afforded the title product as a pale yellow solid (0.57 g, 24%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.49 (d, 2H, J = 4.0 Hz, ArH), 8.39 (s, 1H, ArH), 8.37 (d, 2H, J = 4.8 Hz, ArH), 7.95 (m, 2H, ArH), 7.57 (ddd, 2H, J = 1.6, 7.6, 7.6 Hz, ArH), 7.41-7.47 (m, 4H, ArH), 7.31 (d, 2H, J = 7.6 Hz, ArH), 7.11 (dd, 2H, J = 4.8, 6.0 Hz, ArH), 4.67 (s, 2H, -CH₂-), 3.88 (s, 4H, -CH₂-).

Scheme S1 Synthesis of DPA and ADPA ligands.

(b)

4

(c)

Figure S1 MALDI-TOF mass spectra of (a) Cu(DPA) complex, (b) Cu(ADPA) complex, and (c) reaction solution of Cu(ADPA) + $AsH_2 + CCl_4$ in CH₃CN.

6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 f1 (ppm)

Figure S3 ¹H NMR spectra for product determination from **1b**-catalysed ATRA of CCl₄ to styrene in 2 wt% Tween 20/H₂O monitored at the reaction time of (a) 3 h, (b) 4 h, (c) 5 h, and (d) 6 h.

Figure S4 ¹H NMR spectra for product determination from copper-catalysed ATRA of CCl₄ to styrene in 2 wt% Tween 20/H₂O using 1% mol of Cu(II) catalyst; (a) Cu(ClO₄)₂, (b) **1a**, (c) **1b**, and (d) **2b**.

***Calculation :** Conversion (%) of alkene was calculated according to the following equations.

% conversion =
$$\frac{I_p}{I_{alkene} + I_p} \times 100$$

When I_p = The integration of proton signal of the analysed product (e.g., H_d, H_e, or H_f) I_{alkene} = The integration of proton signal of the alkene (e.g., H_a, H_b, or H_c)

The integrated peak area of one proton in the product was initially set to be equal 1.00.

For Example: Considering the spectrum (a)

% conversion =
$$\frac{\int H_d}{\int H_a + \int H_d} \times 100$$

= $\frac{1.00}{0.00 + 1.00} \times 100$
= 100 %

Figure S4 ¹H NMR spectra for product determination of **1b**-catalysed ATRA reaction in 2 wt% Tween 20 with various alkene substrates; (a) styrene, (b) methyl methacrylate, (c) acrylonitrile, and (d) 1-hexene.

Figure S5 (a) ¹H NMR spectrum and (b) ¹³C NMR spectrum for product determination from **1b**-catalysed ATRA of CCl₄ to styrene in 2 wt% Tween 20/H₂O in the presence of toluene (0.15 eq.) as an internal standard.

*Calculation: Yield (%) of product was calculated according to the following equations.^{S1, S2}

(I)
$$\frac{R_p}{R_{STD}} = \frac{I_p / N_p}{I_{STD} / N_{STD}} = x_1$$

(II)
$$\operatorname{mol}_{p} = \operatorname{mol}_{STD} x X_{1} = Y_{2}$$

(III) %yield =
$$\frac{Y_2}{\text{mol}_{alkene}}$$
 x 100

When I_p = Integration from the proton signal of the analysed product (e.g., H_a, H_b, or H_c) N_p = Number of protons in the structure of product. For example, N_p of H_a, H_b, or H_c = 1 I_{STD} = The integration of proton signal of the internal standard (e.g., -CH₃) N_{STD} = Number of protons in the structure of internal standard. For example, N_p of -CH₃ = 3 mol_{STD} = 0.11 mmol mol_{alkene} = 0.37 mmol

For Example: Considering the spectrum from Figure S5,

(I)
$$\frac{R_p}{R_{STD}} = \frac{0.82/1}{1.00/3} = 2.48$$

(II)
$$mol_p = 0.11 \times 2.48 = 0.27$$

(III) %yield =
$$\frac{0.27}{0.37}$$
 x 100 = 73 %

Table S1 Effect of surfactant concentration on copper-catalysed ATRA in water.

	ĺ	+ CCI ₄ $\frac{1 \text{ mol\% [CuII], 7 mol% AsH2,}}{0.5-2.0 \text{ wt% TWEEN20/ H2O}}$	CI CCI₃
_	Entry	Surfactant concentration in H ₂ O (%w/w)	Conversion (%)
_	1	0.5 wt% Tween 20	39
	2	1.0 wt% Tween 20	50
	3	2.0 wt% Tween 20	99

All Reactions were performed at 60°C for 6 h using **1b** as an ATRA catalyst with the molar ratio of [alkene]: $[CCl_4]$: $[AsH_2] = 1.00$: 1.25: 0.07 and $[Styrene]_0 = 0.147$ M.

% conversions were determined by ¹H NMR spectroscopy.

Figure S6 ¹H NMR spectrum of **1b**-catalysed ATRA of CBr₄ to styrene

Figure S7 ¹H NMR spectra of **1b**-catalysed ATRA of CCl₄ to styrene in the presence of TEMPO in 2 wt% Tween $20/H_2O$.

Figure S8 ¹H NMR spectra of **1b**-catalysed ATRA of CCl₄ to styrene using AIBN as a reducing agent with [alkene]: [CCl4]: [AIBN] = 1.00: 1.25: 0.07 in (a) 2 wt% Tween 20/H₂O at 60 °C for 6 h which gave 99% conversion but the product was not the monoadduct; and (b) 2.5% D_2O/CD_3CN at room temperature (30-35 °C) for 24 h which gave no conversion.

Comparison of catalytic performance of various copper catalysts for ATRA

Entry	Catalyst	Alkene/Initiator/Reducing	Condition	Conversion	Yield	Ref.
		agent		(%)	(%)	
		([Alkene]: [Reducing agent])				
1	[Cu ^{ll} (1Q)Cl]	Styrene/CCl₄/AIBN	1.0% Cat. in		98	S3
	(1Q= N,N-	Styrene/CHCl ₃ /AIBN	CD ₃ CN, N _{2,}		53	
	bis(pyridine-2-	Styrene/ CBr ₄ /AIBN	white LEDs, 24		90	
	ylmethyl)quinoline-8-	Styrene/CHBr ₃ /AIBN	h.		73	
	amine)	Styrene/CHCl ₃ /L-ascorbic acid		61	60	
		(1.0: 0.05)				
		Styrene/CCl₄/AIBN			100	
		Acrylonitrile/CCl₄/AIBN	1.0% Cat. in		88	
		Methyl methacrylate (MMA)	CD ₃ OD, N ₂ ,		95	
		/CCl₄/AIBN	white CFL, 48			
		(1.0: 0.05)	h.			
2	[Cu ^{II} (TPMA)CI][CI]	Styrene/CCl₄/AIBN	0.4% Cat. 60°C		85	S4
		1 hovers/CCL /AIDN	0.01% Cat		72	
		1-nexene/cci4/AIBN	0.01% Cal.		12	
		Mathyl mathagylata (MANAA)	60 C		66	
			0 1% Cat		00	
		/CC14/V-70	0.1% Cdl.			
2	[Cu ^{ll} /TDMA\Br]Br	Styrene/CBr./AIRN	0.0005% Cat in		05	
5		Styrene, CDI4/AIDIN	bulk 60°C 24		90	
			bulk, 00 C, 24			
		1-hevene/CBr./V-70			03	
			0.0005% Cat. in		55	
			bulk 60°C 24			
		Methyl methacrylate	buik, 00 C, 24		71	
		(MMA)/CBr₄/V-70			/1	
			0.01% Cat.			
			ambient temp.			
4	[Cu ^{II} (Me ₆ TREN)Cl][Cl]	1-hexene/CCl₄/AIBN	0.1% Cat. in	100	100	S5
	0.4%		CH₃CN, 60 °C,			
			24 h.			
		Methyl Acrylate (MA)/CCl₄/AIBN	0.4% Cat. in	100	67	
		Styrene/CHCl ₃ /AIBN	CH₃CN, 60 °C,	77	40	
		(1: 0.05)	24 h.			
5	[Cu ^{II} (Me ₆ TREN)Br][Br]	Methyl Acrylate (MA)/CBr ₄ /AIBN	0.1% Cat.in	100	87	
	. ,	(1: 0.05)	CH₃CN at 60 °C,			
		- · ·	24 h.			

 Table S2 Previously-reported copper-catalysed ATRA.

Entry	Catalyst	Alkene/Initiator/Reducing agent ([Alkene]: [Reducing agent])	Condition	Conversion (%)	Yield (%)	Ref.
6	[Cu ^{ll} (TPFN)Br][Br]	Styrene/CBr ₄ /I -ascorbic acid	0 1% Cat in	97	61	56
U		Methyl methacrylate (MMA)	MeOH 60 °C	90	29	
		/CBr ₄ /L-ascorbic acid	74 h	50	25	
		(1: 0.07)	27.11.			
7	CuCl or CuCl ₂	Styrene/TsCl/No additive	1% Cat. in		NR	S7
8	CuCl/phen or		CH₃CN, visible		NR	
	CuCl ₂ /phen		light (530 nm),			
9	[Cu(dap) ₂]Cl		N ₂ , r. t. (25-30		96	
10	[Cu(dap)Cl ₂]		°C), 24 h.		95	
11	[Ru(bpy) ₃]Cl ₂				80	
12	[Cu(ADPA)(H ₂ O)(ClO ₄) ₂]	Styrene	1% Cat. in 2wt%	>99	100	This
		Methyl methacrylate (MMA)	Tween 20/H₂O,	85	52	work
		Acrylonitrile	60 °C, 24 h.	28	30	
		1-hexene		92	88	
		/CCl ₄ /L-ascorbic acid				
		(1.00:0.07)				
		Styrene	1% Cat. in 2wt%	87	77	
		Methyl methacrylate (MMA)	Tween 80/H₂O,	93	48	
		Acrylonitrile	60 °C, 24 h.	74	67	
		1-hexene		>99	95	
		/CCl₄/L-ascorbic acid				
		(1.00:0.07)				

 Table S2 Previously-reported copper-catalysed ATRA (continued).

*NR = no reaction

Determination of droplet/ particle size

The sample was prepared according to experiment 2.2.3 in the same condition as shown in Table 2, Entry 7 by using **1b** as the catalyst for ATRA of CCl₄ to styrene in 2 wt% Tween 20/ H_2O at 60°C for 6 h. The colloidal solution (designated as 1b_2%TWEEN20) was then diluted by an addition of Milli-Q water to obtain the final concentration of 1mM Tween 20 (designated as 1b_1mMTWEEN20). After that, the particle diameter of these samples was measured by dynamic light scattering (DLS).

Figure S9 Droplet/particle size distribution of the samples with 2%Tween 20 (—) and 1mM Tween 20 (—) measured by dynamic light scattering (DLS).

Table S3 Z-average	e particle diameter	r (d) analyzed by DLS
--------------------	---------------------	-----------------------

Entry	Sample	T (°C)	Z-Ave (d, nm)	σ _d (nm)
1	1b_2%TWEEN20	25	106.32	1.68
2	1b_1mMTWEEN20	25	84.41	1.31
3*	1b_1mMTWEEN20	25	121.1	1.27

 σ_d is standard deviation and polydispersity index (PdI) is less than 0.03.

*Micelle diameter (d) of 1mM TWEEN20 (20 CMC) is 7.2 nm (σ_d = 1.2 nm).^{S8}

*A sample in Entry 2 was kept for 74 days before measuring Z-average particle diameter again.

Figure S10 (a) Representative DLS analysis of **1b**-catalysed ATRA dispersed in 2 wt% TWEEN20/H₂O; and (b) photograph of the ATRA reaction in 2 wt% TWEEN20/H₂O (1) versus diluted to 1mM TWEEN20 (2).

Figure S11 SEM image of **1b**-catalysed ATRA reaction 2 wt% TWEEN20/H₂O which was diluted to 0.5 mM TWEEN20.

References

- **S1** J. J. Salisbury, *Analytical Chemistry*, 2011, **83**, 8766-8771.
- **S2** G. F. Pauli, Journal of medicinal chemistry, 2014, **57**, 9220-9231.
- S3 O. Reiser and M. Sukwattanasinitt, New J. Chem., 2022, 46, 12158.
- **S4** T. Pintauer, *Eur. J. Inorg. Chem.* 2010, 2449-2460.
- **S5** W. T. Eckenhoff and T. Pintauer, *Dalton Trans.*, 2011, **40**, 4909.
- **S6** T. Pintauer, Polymer, 2015, **72**, 246-252.
- **S7** O. Reiser, ACS Catal. 2019, **9**, 1103-1109.
- **S8** P. A. Kralchevsky, *Phys. Chem. Chem. Phys.*, 2007, **9**, 5183-5198.