Free and Coordinated Biarsolyls

Ryan M. Kirk^a and Anthony F. HIll*^a

Received 6th July 2023, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Experimental considerations

General Precautions: Unless otherwise stated, reactions were carried out under an atmosphere of commercially purified argon or nitrogen using standard Schlenk techniques. Caution should be exercised when handling the arsenic-containing materials described herein – in all cases their toxicological properties are unknown and they are therefore regarded as **toxic**. Metal carbonyls are volatile sources of both carbon monoxide and nanoparticulate metal. Benzene (including benzene- d_6) is a known **carcinogen**. The utmost caution should be exercised when distilling and storing flammable solvents over alkali metals. UV-radiation is non-ionising though ocular protection and suitable shielding should still be in place when sources are active; photolysis of metal carbonyls typically liberates one or more equivalents of carbon monoxide which should be vented appropriately.

Materials: Reagents and materials were obtained from commercial vendors and used as received: $[Cp_2ZrCl_2]$, 2-butyne, $[Mn(CO)_3(\eta-C_5H_4Me)]$ (Ethyl Corp.), AsCl₃, *n*-BuLi (2.5 M in hexanes), neutral alumina, silica gel (230—400 mesh), C₆D₆, CD₂Cl₂ (Cambridge Isotopes Laboratories). HPLC-grade solvents were purchased from Merck and re-purified by distillation under nitrogen from an appropriate desiccant: THF, Et₂O (Na/benzophenone); CH₂Cl₂, CHCl₃ (P₂O₅); *n*-pentane, *n*-hexane, *n*-heptane, C₆D₆ (K mirror); CD₂Cl₂ (CaD₂). Solvents for chromatography were degassed with nitrogen and used as received from the same vendor without re-purification.

Instrumentation. NMR spectra were collected on Bruker Avance 400, 600, 700 or 800 MHz spectrometers (13 C frequencies of 100.6, 150.9, 176.0 and 201.2 MHz respectively). Spectra are reported in ppm shift downfield from SiMe₄ and referenced to the residual protio-solvent impurity (1 H: C₆D₆ 7.16, CD₂Cl₂ 5.32 ppm) or the solvent signal itself (13 C: C₆D₆ 128.0, CD₂Cl₂ 53.8 ppm). 1 H NMR spectra are reported to two decimal places, and 13 C to one decimal place. NMR spectra were processed within the MestReNova software package. We thank Dr Doug Lawes of the ANU for assistance and helpful conversation during acquisition of NMR data.

Solution IR were recorded on a Perkin-Elmer Spectrum One FT-IT spectrometer with polished KBr-window cells and wavenumbers are reported to the nearest whole number. Elemental microanalysis was carried out by the Chemical Analysis Facility at Macquarie University (NSW, Australia) and compositions are reported to two decimal places. Data provided are generally the average of dual analyses.

High-resolution ESI mass spectrometry was carried out in positive-ion mode with acetonitrile matrices by the JMSF service at the Research School of Chemistry, ANU, using a Waters Synapt G2-Si HDMS LC-Q/TOF MS-MS spectrometer. Ion masses are reported to four decimal places and most-abundant isotopic compositions for non-C,H,O elements are listed in the text. We thank Mrs Anitha Jeyasingham for acquisition of this data and helpful conversation.

Photolysis of transition metal carbonyls was carried out in a home-made chamber equipped with a 370 nm UV-LED lamp, magnetic stirrer, argon gas inlet and outlet leading to a ventilated fume-hood. A 50 mL quartz-glass Schlenk tube was used for all experiments. Internal temperature is maintained by extraction fan and a supplementary corrugated aluminium mesh heat-sink, though in our experience temperatures never exceeded *ca*. 30 °C inside the apparatus. We thank Dr Jamie Hicks of the ANU for kind loan of this equipment.

Crystallography. Single crystal X-ray diffraction was performed on either an Agilent Technologies XCaliber or Supernova/EosS2-CCD diffractometer with graphite monochromated Mo-K α (λ = 0.71069 Å) or Cu K α (λ = 1.54184 Å) at 150 K. Selected crystals were mounted in oil on Nylon loops and fixed under a cold stream of nitrogen. Data were processed using the CrysAlisPRO-CCD and -RED software packages.1 Absorption corrections are stated for each sample separately. The structures were solved within the Olex2² software package with SHELXT⁴ using intrinsic phasing and refined with SHELXL³ using full-matrix least-squares against F² in an anisotropic (non-hydrogen atoms only) approximation. All hydrogen atom positions were refined by isotropic approximation in a "riding" model with the $U_{iso}(H)$ parameters fixed to 1.2 $U_{eq}(C_i)$ (for methyl hydrogens) or 1.5 $U_{eq}(C_i)$ (for cyclopentadienyl hydrogens), where $U_{eq}(C_i)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Crystal structures were analysed and POV-RAY images rendered within the Mercury 4.3.0 software package.4

^{a.} Research School of Chemistry, Australian National University, Canberra, ACT. Email: a.hill@anu.edu.au.

Computational Studies. Calculations were performed by using the SPARTAN20[®] suite of programs.⁵ Geometry optimisation (gas phase) was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon,^{6,7} with the exception of the compounds AMe₃, A_2Me_4 and $(AC_4H_4)_2$ (A = N, P, As, Sb, Bi) for which the @B97X functional was used for consistency due to the element bismuth not being implemented in the wB97X-D functional within SPARTAN20®. The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt⁸ was used for elements with Z > Kr while Pople 6-31G* basis sets⁹ were used for all other atoms. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. The vertical excitation energies of the first 6 excited states were predicted by TD-DFT calculations using the ω B97X-D functional and the 6-31G* basis sets starting from the respective wB97X-D optimized gas-phase So geometry.. Cartesian atomic coordinates are provided below.

Synthesis of (AsC₄Me₄)₂ (4d) - To a stirred solution of 2.00 g $[ZrCl_2(\eta^5-C_5H_5)_2]$ (6.8 mmol) in 50 mL THF cooled to -78 °C was added 5.5 mL n-BuLi solution (13.7 mmol; 2.5 M in hexanes). After 30 minutes at low temperature, 1.1 mL 2-butyne (13.8 mmol) was added and the mixture allowed to warm to ambient temperature. A colour change from yellow to deep red was observed. After 3 hours, volatiles were removed under reduced pressure and the crude $[ZrC_4Me_4(\eta^5-C_5H_5)_2]$ re-dissolved in 50 mL n-pentane and cooled to -40 °C. To this was added 0.55 mL AsCl₃ (6.6 mmol. Caution: poison and vesicant) dropwise causing the red colour to discharge to a pale-yellow suspension. After 15 minutes the suspension was filtered through a short diatomaceous earth plug (5 x 2.5 cm) into a flask cooled to -40 °C under nitrogen, rinsing with small portions of cold *n*-pentane until the washings ran clear. The yellow filtrate was freed of volatioes under reduced pressure at -40 °C leaving ClAsC₄Me₄ as a waxy yellow solid, used in the next step without further purification. Crude isolated yield: 1.30 g (5.9 mmol, 89%).

A dilute sodium amalgam was prepared by slow addition of 150 mg freshly cut sodium (6.6 mmol, in *ca* 30 mg pieces. **Caution**: flammable) to ca 1 mL of stirred elemental mercury (caution: toxic, exothermic dissolution) under argon. The amalgam was then covered with 10 mL THF. The crude $ClAsC_4Me_4$ from the previous step was dissolved in 20 mL THF, of which 10 mL was withdrawn by syringe and transferred to the amalgam. The remaining THF solution of CIAsC4Me4 was cooled to -78 °C to prolong shelf-life while Na[AsC₄Me₄] was being prepared. The amalgam was rapidly stirred for 90 minutes over which time the colour of the mixture changed to green, and then eventually to an orange-brown with deposition of a fine grey precipitate. The solution of Na[AsC₄Me₄] was then decanted back into the flask containing the remaining ClAsC₄Me₄ at -78 °C and allowed to warm to ambient temperature overnight with stirring. After this time, volatiles were removed under reduced pressure and the residue extracted with n-hexane and eluted through a short plug of oven-dried neutral alumina (10 x 2.5 cm) under nitrogen with the same solvent. A yellow band was collected under nitrogen and taken to dryness leaving the product as a lemonyellow solid, which was deemed sufficiently pure by NMR The following data may be compared with those reported by Theopold.¹⁰ NMR: ¹H (C₆D₆, 400 MHz, 25 °C) δ_{H} 1.91 (s, 6 H, α -CH₃), 1.72 (s, 6 H, β -CH₃) ppm. ¹³C{¹H} (C₆D₆, 400 MHz, 25 °C) δ_{C} 142.9 (arsole {2,5}-C), 139.5 (arsole {3,4}-C), 15.5 (α -CH₃), 14.6 (β -CH₃) ppm. HR-MS (EI, MeCN, +ve ion) found *m/z* 366.0303 (calc. for C₁₆H₂₄As₂ [*M*]⁺: 366.0304).

Single crystals were obtained by slow evaporation of Et₂O solution at -30 °C. Data for $C_{16}H_{24}As_2$ ($M_w = 366.19 \text{ gmol}^{-1}$): yellow plate 0.079 × 0.161 × 0.311 mm, triclinic, space group *P*-1 (no. 2), *a* = 7.9490(3) Å, *b* = 9.1682(4) Å, *c* = 11.5715(5) Å, *a* = 86.399(4)°, *b* = 87.580(4)°, *y* = 77.707(4)°, *V* = 821.99(6) Å³, *Z* = 2, multi-scan correction $T_{min}/T_{max} = 0.795/1.000$, μ (Mo-K α) = 4.048 mm⁻¹, $\rho_{calc} = 1.480$ Mgm⁻³, 6873 reflections measured (6.914° ≤ 20 ≤ 52.736°), 3349 unique ($R_{int} = 0.0276$, $R_{sigma} = 0.0482$) which were used in all calculations, *GOF* = 1.055, $D_{min}/D_{max} = -0.40/0.56$ eÅ⁻³. The final R_1 was 0.0309 ($I > 2\sigma(I)$) and wR_2 was 0.0662 (all data). CCDC number 2237549.

Synthesis of $[Mn_2{\mu-(AsC_4Me_4)_2}(CO)_4(\eta^5-C_5H_4Me)_2]$ (8). A dilute solution of $[Mn(THF)(CO)_2(\eta^5-C_5H_4Me)]$ was prepared by UV-photolysis of 0.20 mL [Mn(CO)₃(η^5 -C₅H₄Me)] (1.2 mmol. Caution: toxic) in 30 mL THF at ambient temperature. Progress is monitored by IR spectroscopy. When the conversion was deemed complete the solution was transferred to a solution of 150 mg (AsC₄Me₄)₂ (0.40 mmol) in 5 mL THF and allowed to stir overnight. The resulting orange solution was freed of volatiles under reduced pressure and the residue extracted with portions of petroleum ether. The combined extracts were transferred to a silica gel column (20 x 2.5 cm) made up in petroleum ether. Eluting with the same solvent provided a pale yellow band of unchanged/reformed $[Mn(CO)_3(\eta^5-C_5H_4Me)]$ which is discarded. Eluting with 9:1 petroleum ether/Et₂O provided a bright orange band which was collected under a stream of nitrogen and dried in vacuo giving an orange-red solid. Isolated yield: 185 mg (0.24 mmol, 61%). No other products were obtained. The product is readily soluble in common organic solvents and is reasonably air stable in the solid state, however solutions exposed to air degrade to insoluble brown residues over several hours.

NMR: ¹H (C₆D₆, 400 MHz, 25 °C) $\delta_{\rm H}$ 4.10 (s, 4 H, {2,5}-η⁵-C₅H₄CH₃), 3.95 (s, 4 H, {3,4}-η⁵-C₅H₄CH₃), 2.09 (s, 12 H, α-CH₃), 1.75 (s, 12 H, β-CH₃), 1.70 (s, 6 H, η⁵-C₅H₄CH₃) ppm. ¹³C{¹H} (C₆D₆, 176 MHz, 25 °C) $\delta_{\rm C}$ 232.4 (CO), 143.5 (arsole {2,5}-C), 139.7 (arsole {3,4}-C), 97.3 ({1}-η⁵-C₅H₄(CH₃)), 80.1 ({2,5}-η⁵-C₅H₄(CH₃)), 79.4 ({3,4}-η⁵-C₅H₄(CH₃)), 15.4 (α-CH₃), 14.5 (β-CH₃), 13.7 (η⁵-C₅H₄(CH₃)) ppm. IR (CH₂Cl₂) v_{c0} 1921(vs), 1864(vs) cm⁻¹. IR (*n*-hexane) v_{c0} 1941(s), 1930(vs), 1877(vs) cm⁻¹. HR-MS (ESI, MeCN, +ve ion) found *m/z* 745.9956 (calc. for C₃₂H₃₈O₄⁵⁵Mn₂⁷⁵As₂ [*M*]⁺: 745.9963). Analysis found 51.61% C, 5.16% H; calc. for C₃₂H₃₈O₄Mn₂As₂: 51.50% C, 5.13% H.

Single crystals were obtained from slow evaporation of an NMR solution in C_6D_6 . $C_{32}H_{38}O_4As_2Mn_2$ ($M_w = 746.34$ gmol⁻¹): orange prism 0.111 × 0.239 × 0.289 mm, monoclinic, space

group *Cc* (no. 9), a = 15.1023(3) Å, b = 10.6207(2) Å, c = 19.3216(5) Å, $\theta = 99.683(2)^\circ$, V = 3054.97(12) Å³, Z = 4, multiscan correction $T_{min}/T_{max} = 0.830/1.000$, μ (Mo-K α) = 3.012 mm⁻¹, $\rho_{calc} = 1.623$ Mgm⁻³, 32377 reflections measured (6.668° $\leq 20 \leq 65.13^\circ$), 9848 unique ($R_{int} = 0.0247$, $R_{sigma} = 0.0281$) which were used in all calculations, *GOF* = 1.045, $D_{min}/D_{max} = -0.39/0.69$ e/Å³. The final R_1 was 0.0240 ($I > 2\sigma(I)$) and wR_2 was 0.0562 (all data). CCDC number 2239173.

Crystal Structure Determination of (AsC₄**H**₂**Ph**₂**-2**,**5**)₂ (**4c**) – Crystals were grown by slow evaporation of a chloroform solution at room temperature. C₁₆H₁₂As₂ ($M_w = 279.18 \text{ gmol}^{-1}$): monoclinic, space group $P2_1/c$ (no. 14), a = 21.2484(13) Å, b = 7.16710(10) Å, c = 12.0812(7) Å, $\beta = 140.098(12)^\circ$, V = 1180.2(2) Å³, Z = 4, Gaussian correction $T_{min}/T_{max} = 0.530/1.000$, yellow prism 0.165 x 0.091 x 0.062 mm, μ (Cu K α) = 2.259 mm⁻¹, $\rho_{calc} = 1.571 \text{ Mgm}^{-3}$, 11117 reflections measured (12.99° $\leq 2\Theta \leq 147.30^\circ$), 2383 unique ($R_{int} = 0.02204$, $R_{sigma} = 0.0155$) which were used in all calculations, GOF = 1.105, $D_{min}/D_{max} = -1.97/1.37 \text{ eÅ}^{-3}$. The final R_1 was 0.0226 ($I > 2\sigma(I)$) and wR_2 was 0.0584 (all data) for 154 refined parameters without retraints. CCDC number 2236821.

Crystal Structure Determination of (AsC₄**Ph**₄)₂ (**4g**) - Crystals were grown by evaporation of CH₂Cl₂/petroleum ether solution. C₅₆H₄₀As₂ (*M*_w = 862.72 gmol⁻¹): triclinic, space group *P*-1 (no. 2), *a* = 10.03710(10) Å, *b* = 12.67500(10) Å, *c* = 17.32020(10) Å, α = 89.7530(10)°, β = 88.1950(10)°, γ = 71.8550(10)°, V = 2092.83(3) Å³, *Z* = 2, spherical correction *T*_{min}/*T*_{max} = 0.819/1.000, μ(Cu Kα) = 2.259 mm⁻¹, *ρ*_{calc} = 1.369 Mgm⁻³, 80145 reflections measured (7.34° ≤ 2Θ ≤ 156.164°), 8843 unique (*R*_{int} = 0.0356, *R*_{sigma} = 0.0178) which were used in all calculations, *GOF* = 1.043, *D*_{min}/*D*_{max} = -0.5/1.2 eÅ⁻³. The final *R*₁ was 0.0316 (*I* > 2*σ*(*I*)) and *wR*₂ was 0.0831 (all data). CCDC number 2244816.

Notes and references

- 1 *CrysAlis PRO*, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- 2 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallog.*, **2009**, *42*, 339-341.
- 3 (a) G. M. Sheldrick, *Acta Crystallogr. Sect. A: Found. Crystallogr.*, 2008, **64**, 112; (b) G. M. Sheldrick, *Acta Crystallogr. Sect. C: Cryst. Struct. Commun.*, 2015, 71, 3.
- 4 (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453-457. (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466-470.
- 5 Spartan 20[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- J. D. Chai and M. Head-Gordon, *J Chem Phys.*, 2008, 128, 084106.
- 7 J. D. Chai and M. Head-Gordon, *Phys Chem Chem Phys*, 2008, **10**, 6615-6620.
- (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283. (b) P. J. Hay and W. R. Wadt, J. Chem. Phys.,

1985, **82**, 299-310. (c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284-298.

- 9 W. J. Hehre, R. Ditchfeld and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257–2261.
- S. C. Sendlinger, B. S. Haggerty, A. L. Rheingold and K. H. Theopold, *Chem Ber.*, 1991, **124**, 2453-2456.
- 11 G. Märkl and H. Hauptmann, *Angew. Chem., Int. Ed. Engl.*, 1972, **11**, 439-440.

Computational Results

1. *syn*-[Mn₂{μ-(AsC₄H₄)₂}(CO)₄(η-C₅H₅)₂]

Figure S1. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Zero Point Energy :	855.04	kJ/mol	(ZPE)
Temperature Correction :	68.16	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	923.21	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-7922.486760	au	(Electronic Energy + Enthalpy Correction)
Entropy:	675.17	J/mol•K	
Gibbs Energy :	-7922.563432	au	(Enthalpy - T*Entropy)
C _v :	497.37	J/mol•K	

ARTICLE

Cartesian Coordinates

Aton	ı x	У	Z
Mn	-2.508871	-0.287022	1.098676
As	-1.161013	0.361740	-0.649888
As	1.160383	-0.359422	-0.650003
Mn	2.509109	0.287417	1.098638
С	0.953510	-2.203982	-1.179246
н	0.626160	-2.993209	-0.513432
С	1.694912	0.009942	-2.464254
н	1.941561	0.995407	-2.839861
С	1.340883	-2.355752	-2.456508
н	1.359372	-3.317796	-2.962416
С	1.746022	-1.132001	-3.168394
н	2.055601	-1.177654	-4.209488
С	-1.695554	-0.007023	-2.464171
н	-1.942568	-0.992269	-2.840144
С	-0.954258	2.206453	-1.178196
н	-0.626974	2.995286	-0.511879
С	-1.340994	2.358367	-2.455647
н	-1.359295	3.320638	-2.961085
С	-1.746227	1.134993	-3.168180
н	-2.055813	1.181157	-4.209225
н	-4.344929	0.082481	3.272828
С	-4.295897	-0.033662	2.199046
С	-4.342061	-1.258055	1.490537
н	-4.137365	2.081111	1.462079
н	-4.428246	-2.241695	1.931918
С	-4.260113	-0.974796	0.095195
н	-4.289445	-1.696345	-0.709011
С	-4.170979	0.437226	-0.045274
н	-4.093157	0.973436	-0.982843
С	-4.188498	1.023949	1.242105
н	4.433046	2.238492	1.928800
С	4.344901	1.254656	1.488096
С	4.261754	0.969027	0.093293
н	4.345216	-0.081889	3.272810
н	4.292558	1.690375	-0.711050
С	4.169075	-0.443101	-0.044662
н	4.090068	-0.981542	-0.980815
С	4.185652	-1.027523	1.243704
н	4.132376	-2.084293	1.464848
С	4.296045	0.031520	2.198727
С	1.645707	1.820714	1.313590
0	1.153835	2.862826	1.442953
С	1.575125	-0.577021	2.343775
0	1.089731	-1.165124	3.212763
С	-1.576794	0.581128	2.342695
0	-1.091997	1.171132	3.210715
С	-1.642376	-1.818425	1.314794
0	-1.149177	-2.859873	1.444544

2. anti-[Mn₂{ μ -(AsC₄H₄)₂}(CO)₄(η -C₅H₅)₂]

Figure S2. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Zero Point Energy :	855.47	kJ/mol	(ZPE)
Temperature Correction :	68.23	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	923.70	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-7922.487889	au	(Electronic Energy + Enthalpy Correction)
Entropy :	676.34	J/mol•K	
Gibbs Energy :	-7922.564694	au	(Enthalpy - T*Entropy)
C _v :	497.26	J/mol•K	

Cartesian Coordinates

Atom	x	У	z
Mn	0.497223	-0.071717	-3.126273
As	-0.545571	0.163176	-1.082172
As	0.553779	-0.031246	1.088215
Mn	-0.527805	-0.247960	3.114671
С	1.941519	-1.273480	0.587728
н	1.810317	-2.345665	0.507033
С	1.848814	1.373441	0.826121
н	1.641841	2.428823	0.957228
С	3.087876	-0.614035	0.351452
н	4.008869	-1.110321	0.057965
С	3.038209	0.849680	0.487409
н	3.921849	1.451478	0.295416
С	-1.586622	1.736955	-0.684519
н	-1.203114	2.749817	-0.715195
С	-2.127522	-0.866792	-0.687826
н	-2.179952	-1.948505	-0.709689
С	-3.148082	-0.047734	-0.383676
н	-4.142533	-0.406141	-0.131872
С	-2.849824	1.392352	-0.384712
н	-3.620029	2.114700	-0.130120
н	1.378726	1.065859	-5.606795
С	0.525278	0.606833	-5.126766
С	-0.509487	1.295490	-4.422613
н	0.821666	-1.560184	-5.555266
н	-0.585816	2.363877	-4.278225
С	-1.436010	0.322544	-3.970341
н	-2.333698	0.524632	-3.398872
С	-0.986453	-0.959508	-4.377247
н	-1.485656	-1.900177	-4.191964
С	0.231355	-0.776835	-5.099801
н	2.364502	-0.238036	3.403632
С	1.441279	-0.314997	3.964760
С	0.751084	-1.519292	4.257602
н	0.998683	1.814476	4.471451
н	1.061997	-2.516080	3.978347
С	-0.412066	-1.174024	5.010481
н	-1.145182	-1.866887	5.400410
С	-0.433596	0.231834	5.169241
н	-1.186520	0.798156	5.700332
С	0.717666	0.771869	4.518035
С	-1.661741	1.093961	2.851227
0	-2.386249	1.997229	2.810185
С	-1.660023	-1.498049	2.560368
0	-2.391156	-2.359451	2.302989
С	1.342728	-1.566705	-2.683668
0	1.881957	-2.574954	-2.493903
С	1.880810	0.976205	-2.753903
0	2.784649	1.693084	-2.644814

		IR Spect	rum (cm ⁻¹)		
40	000 3	000 20	00 1/	000	Q
			. ($\gamma \gamma \gamma$	
ulated					
Calci					
	2100	IR Sp 2000	ectrum (cm ⁻¹)	1800 1700	0
	L				
ulated		\land			
Calculated					
Calculated					

ELECTRONIC SUPPORTING INFORMATION

Figure S3. Calculated IR spectrum (carbonyl region) (wB97X-D/6-31G*/Gas Phase)

A band at 258 cm $^{-1}$ corresponds primarily to the $\nu_{\text{As-As}}$ stretch with negligible IR intensity.

3. anti-[Mn₂{ μ -(AsC₄Me₄)₂}(CO)₄(η -C₅H₅)₂]

Figure S4. Optimised Geometry (wB97X-D/6-311+G(2df,2p)/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	1418.51	kJ/mol	(ZPE)
Temperature Correction :	96.89	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	1515.40	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-8236.751354	au	(Electronic Energy + Enthalpy Correction)
Entropy :	855.36	J/mol•K	
Gibbs Energy :	-8236.848488	au	(Enthalpy - T*Entropy)
C _v :	695.56	J/mol•K	

Calculated	Infrared	Absorp	tions	(vco/	cm ⁻¹) ^a
------------	----------	--------	-------	-------	---------------------------------

v_{co} Intensity 1 1934 152 2 1937 1463

3 1976 1086

4 1978 172

^aScaling factor = 0.9420; DFT: ωB97X-D/6-31G*/gas phase

Dalton Transactions

Cartesian Coordinates

				Atom	n x	у	z			
Atom	х	У	2							
Mn	0.543779	0.094803	-3.134886	н	4.529827	-1.588786	-0.959830			
As	-0.562208	0.103937	-1.074604	н	3.934347	-2.915361	0.022850			
As	0.563386	-0.083483	1.079139	н	5.002335	-1.697124	0.730644			
Mn	-0.540552	-0.075460	3.140211	С	1.350972	-2.959881	0.695259			
С	1.769271	-1.524439	0.674790	н	2.119884	-3.596620	1.134728			
С	2.011169	1.145834	0.781386	н	1.159083	-3.330995	-0.313548			
С	2.984150	-1.022078	0.405412	н	0.440009	-3.095529	1.279046			
С	3.118573	0.456077	0.465838	С	-1.351060	2.977826	-0.685556			
C ·	1.771029	1.543365	-0.670950	н	-0.464943	3.120798	-1.304152			
C ·	2.008860	-1.127118	-0.780996	н	-1.115197	3.332013	0.319966			
C ·	3.118150	-0.439125	-0.469062	н	-2.136282	3.622851	-1.080934			
C ·	2.986170	1.039243	-0.405441	С	-4.178594	1.868513	-0.036232			
н	1.245359	1.538223	-5.514526	н	-4.512795	1.620948	0.973111			
С	0.466076	0.928663	-5.088404	н	-5.017424	1.683850	-0.709751			
C ·	0.653801	1.400770	-4.346150	н	-3.952712	2.931151	-0.050848			
Н	1.073127	-1.124372	-5.680357	С	-4.444052	-1.073602	-0.175915			
H	0.881748	2.427391	-4.116418	н	-4.397603	-2.156525	-0.254472			
C ·	1.429399	0.274340	-3.986384	Н	-5.218000	-0.710300	-0.854543			
H	2.343275	0.298444	-3.414065	Н	-4.764849	-0.833419	0.839195			
C ·	0.802895	-0.887869	-4.489387	С	-1.854050	-2.607502	-0.921547			
H	1.161303	-1.897738	-4.384426	Н	-1.738142	-3.087199	0.052721			
С	0.376032	-0.476430	-5.176336	Н	-0.978331	-2.856752	-1.521332			
н	2.345966	-0.288176	3.414566	Н	-2.721984	-3.058549	-1.404320			
С	1.432838	-0.265649	3.988263							
С	0.654343	-1.391804	4.342938	Calo	culated Inf	rared Abso	rptions (v _{co} /	cm⁻¹)ª		
Н	1.172457	1.904425	4.397944		v _{co} Inte	ensity				
Н	0.878050	-2.418134	4.107169		1913 26	0.4				
С.	0.463110	-0.920606	5.089242		1917 14	94 20				
Н	1.243441	-1.530361	5.512493		1959 103	8				
С ·	0.368987	0.483702	5.184578		1901 200	0				
н	1.063735	1.129836	5.693850	^a Scal	ling factor = 0	.9420; DFT: ω	B97X-D/6-31G*/	gas phase		
С	0.810286	0.895465	4.498314							
C -	1.553446	1.350713	2.788641		2000		IR Spectrum (cn	1000	50	0
0	-2.200183	2.293723	2.662795			(~ ~	~		Ť Ť
С ·	1.805660	-1.240722	2.667180	P	10					
0	-2.621741	-2.026203	2.466091	alculat						
C	1.566290	-1.323375	-2.//8652	0						
0	2.221431	-2.260073	-2.650027							
0	1.800588	1.269319	-2.663647							
0	2.609836	2.061/28	-2.462541				IR Spectrun	(cm ⁻¹)		
C	1.855532	2.626229	0.917415	F	2200	21,00	2000	1900	1800	17,00
п 11	1.700917	3.099425					<u>_</u>			
п	2.730500	3.0833/8	1.309180	ated			$\setminus \cap$			
n C	V VV2000	2.8/0120	1.342383	Salcula				1		
с ц	4.442890 5 778633	T.00/13/	0.100121	Ŭ			V	<u> </u>		
н ц	J.220033	0.0333358	0.011204				\	1		
п ц	4.409/00	2.10/800	0.203087							
11 C	4./30309	1 055340	-0.000.0- 60.000.0-	Figur	re S5. Calculat	ted IR spectrur	m (carbonyl regio	on) (ωB97)	X-D/6-311+G((2df,2p)/Ga
ι	4.1/426/	-1.855318	0.037004	Phase	e)					

A band at 247 cm $^{-1}$ corresponds primarily to the $\nu_{\text{As-As}}$ stretch with negligible IR intensity.

6 | Dalton Trans., 2023, 52, Electronic Supporting Information

ELECTRONIC SUPPORTING INFORMATION

Comparison of calculated data for parent and permethylated biarsolyl complexes $[Mn_2\{\mu-(AsC_4R_4)_2\}(CO)_4(\eta^5-C_5H_5)_2]\ (R=H,\ Me,\ \omega B97X-D,\ 6-31G^*)$

Parameter ^a	R = H	R = Me
	6-31G*	6-31G*
Mn–As [Å]	2.308	2.310
As–As [Å]	2.441	2.428
As– C_{α}^{a} [Å]	1.928	1.924
Cα-Cβ [Å]	1.344	1.349
C _β -C _{β'} [Å]	1.470	1.488
C_{α} –As– C_{α} [°]	87.2	88.7
Natural Charge (Mn)	0.721	0.718
Natural Charge (As)	0.704	0.765
Natural Charge (C $_{\alpha}$)	-0.581	-0.368
Natural Charge (C _β)	-0.244	-0.028
Löwden BO (Mn–As)	0.98	0.97
Löwden BO (As–As)	0.84	0.85
Löwden BO (As–Cα)	0.99	0.95
Löwden BO (C_{α} - C_{β})	1.89	1.77
Löwden BO (C _β -C _{β'})	1.15	1.07
LUMO (eV)	-0.34	0.19
HOMO (eV)	-7.54	-7.42
^a Mean values where approp	riate.	

The only significant geometrical variation upon permethylation involves a contraction (0.013 Å) of the As–As bond which is not however reflected in the negligible change (0.01) in the Mn–As and As–As bond orders.

4. anti-(AsC₄Me₄)₂ - anti-4d

Figure S6. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	891.38	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	55.72	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	947.10	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-5094.909823	Enthalpy :
	J/mol•K	593.01	Entropy :
(Enthalpy - T*Entropy)	au	-5094.977164	Gibbs Energy :
	J/mol•K	367.63	C _v :

Allowed Electronic Transitions

nm 🔻	strength	MO Component	
227.14	0.0021	HOMO-1 -> LUMO+2	58%
		HOMO-2 -> LUMO+1	14%
234.90	0.3062	HOMO-3 -> LUMO	82%
239.55	0.0002	HOMO-4 -> LUMO	74%
299.66	0.1548	HOMO-2 -> LUMO	88%
314.64	0.0952	HOMO-1 -> LUMO	92%
316.46	0.0316	HOMO -> LUMO	94%

ARTICLE

Cartesian Coordinates

Aton	n x	У	z
As	0.677282	1.115309	0.051718
As	-0.887022	-0.715214	0.571587
С	-0.166547	-1.006494	2.350992
С	0.216924	-2.195957	-0.002524
С	0.500505	1.074801	-1.874449
С	-0.718197	2.465723	0.043657
С	0.848563	-2.751960	1.055993
С	0.650129	-2.084487	2.361913
С	-0.382095	2.011749	-2.287939
С	-1.074012	2.773225	-1.224544
С	1.382721	0.226426	-2.749987
н	2.152120	0.830296	-3.247788
н	0.811473	-0.285689	-3.533170
н	1.900217	-0.542634	-2.169204
С	0.188269	-2.730433	-1.409231
Н	1.196045	-2.921326	-1.796279
н	-0.295051	-2.027403	-2.093392
н	-0.370268	-3.673426	-1.466502
С	-1.265118	3.025902	1.324109
н	-0.459404	3.359604	1.988377
н	-1.837467	2.266003	1.872746
н	-1.931574	3.877923	1.160720
С	-0.532191	-0.102949	3.492255
Н	-0.164537	-0.468537	4.455731
н	-1.619213	0.013011	3.575526
Н	-0.114148	0.902127	3.346465
С	-0.664119	2.316912	-3.734540
Н	-0.388153	3.349264	-3.982821
н	-1.730878	2.207796	-3.963960
н	-0.107651	1.655825	-4.403114
С	-2.109554	3.794632	-1.614060
н	-2.515737	4.322668	-0.749223
Н	-2.950282	3.318362	-2.133747
н	-1.693672	4.543381	-2.298397
С	1.692949	-3.994856	0.969991
н	1.772704	-4.359070	-0.056911
н	1.268624	-4.804405	1.576658
н	2.708417	-3.815438	1.342839
С	1.357692	-2.629330	3.574373
н	1.104691	-3.683117	3.740916
н	1.101352	-2.081808	4.483167
Н	2.446211	-2.576409	3.452050

5. gauche-(AsC₄Me₄)₂ – gauche-4d

Figure S7. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Zero Point Energy :	891.77	kJ/mol	(ZPE)
Temperature Correction :	55.74	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	947.51	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-5094.916203	au	(Electronic Energy + Enthalpy Correction)
Entropy :	591.39	J/mol•K	
Gibbs Energy :	-5094.983360	au	(Enthalpy - T*Entropy)
C _v :	367.20	J/mol•K	

Cartesian Coordinates

Atom	n x	У	z	
As	0.790385	2.044806	-0.678101	
С	1.239354	2.196565	1.202773	
С	0.173551	1.858547	1.963778	
С	-1.016139	1.374000	1.228795	
С	-0.908742	1.323900	-0.117434	
As	2.046325	-0.041319	-1.041004	
С	1.015421	-1.251258	0.051526	
С	0.170671	-1.972878	-0.717662	
С	0.147313	-1.636206	-2.159002	
С	0.972965	-0.636628	-2.543924	
С	-1.953579	0.829417	-1.077552	
н	-2.142156	-0.240967	-0.924985	
н	-1.637761	0.950926	-2.117042	
н	-2.907166	1.357527	-0.954423	
С	2.577063	2.709099	1.650328	
Н	2.765353	2.512968	2.710496	
Н	2.663137	3.791465	1.492917	
Н	3.389484	2.239843	1.082523	
С	0.128474	1.921544	3.467116	
Н	-0.111979	0.941137	3.896241	
Н	-0.646449	2.618030	3.810034	
Н	1.077232	2.249592	3.896136	
С	-2.239374	0.930119	1.985981	
Н	-2.614133	1.718931	2.649082	
Н	-2.019387	0.060662	2.619006	
Н	-3.050211	0.647751	1.310297	
С	1.162627	-0.058780	-3.915596	
Н	2.136665	-0.339032	-4.334976	
Н	1.133249	1.037550	-3.888189	
Н	0.391290	-0.387709	-4.618558	
С	1.194231	-1.374613	1.538617	
Н	1.462211	-2.395808	1.836424	
Н	1.974449	-0.704294	1.908441	
Н	0.268859	-1.104719	2.063480	
С	-0.789932	-2.385240	-3.068711	
Н	-0.622493	-3.466843	-3.006730	
Н	-0.672736	-2.094815	-4.114554	
Н	-1.836140	-2.207095	-2.789276	
C	-0.742604	-3.040998	-0.178009	
н	-0.642085	-3.146228	0.904723	
н	-0.533462	-4.018365	-0.630086	
н	-1.793781	-2.810584	-0.392900	

6. gauche-(AsC₄H₂Me₂-2,5)₂ – gauche-4b

Figure S8. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

610.85	kJ/mol	(ZPE)
41.57	kJ/mol	(vibration + gas law + rotation + translation)
652.42	kJ/mol	(ZPE + temperature correction)
-4937.798462	au	(Electronic Energy + Enthalpy Correction)
501.11	J/mol•K	
-4937.855368	au	(Enthalpy - T*Entropy)
267.78	J/mol•K	
	610.85 41.57 652.42 -4937.798462 501.11 -4937.855368 267.78	610.85 kJ/mol 41.57 kJ/mol 652.42 kJ/mol -4937.798462 au 501.11 J/mol•K -4937.855368 au 267.78 J/mol•K

Cartesian Coordinates

Ator	m x	у	z	
As	0.997868	1.068981	0.923865	
As	-0.376094	-0.897223	1.430840	
С	0.942059	-2.224501	0.894307	
С	-1.255927	-1.220523	-0.271583	
С	0.913979	1.125445	-1.017681	
С	-0.455161	2.361133	0.930274	
С	-0.644583	-2.244556	-0.899718	
н	-1.007116	-2.646279	-1.844577	
С	0.548521	-2.795076	-0.262555	
н	1.093306	-3.620535	-0.719004	
С	0.045902	2.085647	-1.394742	
н	-0.112424	2.346943	-2.439910	
С	-0.705462	2.753524	-0.335289	
н	-1.434489	3.527411	-0.571778	
С	1.777355	0.293642	-1.911725	
н	2.842213	0.451348	-1.703335	
Н	1.597088	0.537098	-2.964584	
н	1.573752	-0.773409	-1.764451	
С	-2.471393	-0.482535	-0.734761	
н	-2.825443	-0.876998	-1.693710	
н	-2.254526	0.584564	-0.860323	
н	-3.290883	-0.562738	-0.010834	
С	-1.111223	2.883859	2.171098	
н	-0.386922	3.367797	2.836760	
н	-1.582222	2.075874	2.744797	
н	-1.886241	3.617550	1.923843	
С	2.130444	-2.609316	1.720746	
Н	2.711390	-3.395796	1.226878	
Н	1.831222	-2.978769	2.708701	
н	2.795011	-1.752560	1.888453	

Thermodynamic Properties at 298.15 K

Zero Point Energy :	611.43	kJ/mol	(ZPE)
Temperature Correction :	41.63	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	653.07	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4937.791689	au	(Electronic Energy + Enthalpy Correction)
Entropy :	500.84	J/mol•K	
Gibbs Energy :	-4937.848564	au	(Enthalpy - T*Entropy)
C _v :	267.41	J/mol•K	

Cartesian Coordinates

Ator	m x	У	z
As	0.759888	0.927283	-0.258763
As	-0.771268	-0.919954	0.278745
С	-0.296046	-1.049562	2.168435
С	0.490877	-2.378456	-0.022591
С	0.327740	1.058587	-2.158234
С	-0.523261	2.373304	0.016707
С	0.947540	-2.828652	1.162962
н	1.600088	-3.697102	1.242724
С	0.524073	-2.102978	2.352973
н	0.856090	-2.414219	3.342548
С	-0.489986	2.110519	-2.360587
н	-0.796397	2.425533	-3.357223
С	-0.955109	2.823127	-1.178174
Н	-1.618492	3.681993	-1.270467
С	0.912284	0.195487	-3.235932
н	0.746046	0.642109	-4.222613
Н	0.454174	-0.800720	-3.244684
Н	1.991206	0.055035	-3.106072
С	0.803029	-2.987123	-1.356812
Н	1.314925	-3.948151	-1.234020
Н	1.459259	-2.339056	-1.949418
Н	-0.102543	-3.160095	-1.949246
С	-0.893069	2.959694	1.346075
н	-0.011481	3.156906	1.966620
н	-1.544524	2.284852	1.913743
н	-1.432208	3.904494	1.215358
С	-0.834133	-0.169398	3.256275
н	-0.626252	-0.600845	4.241663
Н	-1.917528	-0.028546	3.170619
н	-0.374923	0.825933	3.229387

7. anti-(AsC₄H₂Me₂-2,5)₂ - anti-4b

Figure S9. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

ELECTRONIC SUPPORTING INFORMATION

8. anti-(AsC₄H₂Ph₂-2,5)₂ - anti-4c

Figure S10. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Cartesian Coordinates

Atom	х	У	z	
As	0.859755	0.877344	0.019662	
C	1.981349	0.036574	1.380557	
c	2.033469	0.042262	-1.299666	
C	3.051705	-0.586565	-0.663574	
н	3.888382	-1.031596	-1.197645	
С	3.023782	-0.589180	0.781506	
н	3.840304	-1.034661	1.345555	
С	1.807404	0.184046	2.832031	
С	1.914762	0.193043	-2.756208	
С	1.251871	1.288484	-3.323803	
н	0.788324	2.029228	-2.677816	
С	2.353034	-0.760222	3.714309	
н	2.851470	-1.638770	3.315153	
С	2.488335	-0.752361	-3.619370	
н	2.967090	-1.634088	-3.203424	
С	1.118295	1.274990	3.376627	
н	0.675624	2.014958	2.715303	
С	1.002037	1.431453	4.751723	
н	0.455291	2.280674	5.149206	
С	2.433041	-0.587072	-4.996866	
Н	2.886844	-1.330564	-5.645904	
С	1.187988	1.448072	-4.701972	
Н	0.661536	2.301148	-5.118201	
С	1.573454	0.502096	5.614827	
н	1.479863	0.624406	6.689598	
С	1.786044	0.517012	-5.545029	
н	1.732385	0.641456	-6.622298	
С	2.246009	-0.597675	5.089117	

_				
Ator	n x	У	z	
н	2.679044	-1.340029	5.753500	
As	-0.860444	-0.877936	-0.020411	
С	-1.982719	-0.036775	-1.380492	
С	-2.033572	-0.043534	1.299817	
С	-3.052341	0.585126	0.664357	
н	-3.889059	1.029105	1.199244	
С	-3.025085	0.588383	-0.780716	
н	-3.841627	1.034362	-1.344361	
С	-1.808967	-0.182619	-2.832183	
С	-1.914364	-0.195204	2.756227	
С	-1.249104	-1.289645	3.323010	
Н	-0.784432	-2.029261	2.676543	
С	-2.353720	0.763166	-3.713441	
Н	-2.852223	1.641316	-3.313541	
С	-2.489000	0.748772	3.620221	
Н	-2.970740	1.629541	3.205669	
С	-1.120682	-1.273587	-3.378018	
Н	-0.677482	-2.013792	-2.717284	
С	-1.004797	-1.428677	-4.753392	
Н	-0.457974	-2.277433	-5.151785	
С	-2.431870	0.583163	4.997605	
Н	-2.886543	1.325505	5.647384	
С	-1.183440	-1.449409	4.701079	
Н	-0.653887	-2.300999	5.116395	
С	-1.575455	-0.497834	-5.615444	
Н	-1.482297	-0.619350	-6.690320	
С	-1.782421	-0.519812	5.544930	
Н	-1.728305	-0.644720	6.622121	
С	-2.246543	0.602116	-5.088443	
Н	-2.679398	1.345574	-5.751668	

Zero Point Energy :	1145.08	kJ/mol	(ZPE)
Temperature Correction :	67.45	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	1212.53	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-5704.292445	au	(Electronic Energy + Enthalpy Correction)
Entropy:	666.80	J/mol•K	
Gibbs Energy :	-5704.368167	au	(Enthalpy - T*Entropy)
C _v :	502.78	J/mol•K	

9. anti-(AsC₄H₄)₂ – anti-4f (ωB97X-D)

Figure S11. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	330.68	kJ/mol	(ZPE)
Temperature Correction :	26.61	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	357.29	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4780.672030	au	(Electronic Energy + Enthalpy Correction)
Entropy :	399.10	J/mol•K	
Gibbs Energy :	-4780.717352	au	(Enthalpy - T*Entropy)
C _v :	166.97	J/mol•K	

Cartesian Coordinates

Atom	x	У	z	
As	0.755804	0.949893	-0.156645	
As	-0.845250	-0.847512	0.352853	
С	-0.278878	-1.050673	2.195486	
н	-0.664681	-0.460800	3.019400	
С	0.425237	-2.257390	-0.036851	
н	0.617249	-2.647807	-1.030141	
С	0.339833	0.982472	-2.049307	
н	0.791644	0.323136	-2.782072	
С	-0.542246	2.379906	0.001002	
н	-0.813389	2.857904	0.935821	
С	0.975729	-2.744673	1.092513	
н	1.674893	-3.578357	1.103772	
С	0.585528	-2.076344	2.331716	
н	0.985716	-2.398520	3.290340	
С	-0.503101	1.991649	-2.346722	
н	-0.816647	2.226932	-3.360932	
С	-0.995931	2.763111	-1.208390	
н	-1.691510	3.587072	-1.351844	

10. $gauche-(AsC_4H_4)_2 - gauche-4f(\omega B97X-D)$

Figure S12. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Zero Point Energy :	330.82	kJ/mol	(ZPE)
Temperature Correction :	26.63	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	357.45	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4780.671957	au	(Electronic Energy + Enthalpy Correction)
Entropy :	399.47	J/mol•K	
Gibbs Energy :	-4780.717320	au	(Enthalpy - T*Entropy)
C _v :	167.10	J/mol•K	

Cartesian Coordinates

ELECTRONIC SUPPORTING INFORMATION

Atom	х		у	z	
		As	0.871286	1,234907	1.314455
		As	-0.356890	-0.840464	1.788410
		С	1.062317	-2.042959	1.248539
		н	1.925952	-2.284469	1.857666
		С	-1.142988	-1.207823	0.065715
		н	-2.055458	-0.748136	-0.294295
		С	1.051848	1.136005	-0.603322
		Н	1.818628	0.563637	-1.111175
		С	-0.692106	2.328643	0.979775
		Н	-1.324247	2.747952	1.754185
		С	-0.458859	-2.171140	-0.579788
		н	-0.767466	-2.580608	-1.538705
		С	0.766394	-2.631710	0.073827
		н	1.388160	-3.399109	-0.381485
		С	0.160236	1.941101	-1.211095
		Н	0.131877	2.093921	-2.287311
		С	-0.808263	2.599657	-0.334468
		Н	-1.570419	3.260596	-0.740928

11. $gauche-(AsC_4Ph_4)_2 - gauche-4g$

Figure S13. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Atom	i X	У	Z	
As	-0.148187	1.685245	0.676565	
As	-0.863860	-0.466774	1.553292	
C	0.522978	-0.927168	2.860046	
c	-0.235699	-1.991755	0.510593	
c	0.511888	1.601588	-1.154163	
C	-1.791778	2,454889	-0.069186	
c	0.663899	-2.692898	1.237279	
C C	1 065360	-2 114350	2 527630	
c c	-0 356150	2 233554	-1 976404	
C C	-1 606735	2 718822	-1 374498	
c c	1 841816	1 092725	-1 524150	
c	4.358333	0.126215	-2.293831	
c	1.953311	0.045777	-2.447315	
C	3.009917	1.654661	-0.993388	
c	4.259088	1.172972	-1.381928	
c	3.201655	-0.439610	-2.824542	
н	1 045877	-0 371475	-2 863333	
н	2.948057	2,467741	-0.280639	
н	5.169123	1.608104	-0.975039	
н	3.277894	-1.259116	-3.537961	
н	5.331583	-0.250679	-2.603390	
C	-0.099704	2,474603	-3.415983	
c	0.363567	2.946243	-6.125347	
c	0.532179	3.647689	-3.827881	
c	-0.497385	1.537310	-4.368811	
c	-0.266049	1.772709	-5.718672	
c	0.759987	3.883000	-5.178657	
н	0.861312	4.370458	-3.093960	
н	-0.998301	0.628372	-4.042063	
н	-0.583396	1.037703	-6.457088	
н	1.254625	4.799943	-5.496149	
н	0.537872	3.132050	-7.181847	
С	-2.563642	3.494114	-2.205869	
C	-4.388177	4.984286	-3.706101	
C	-2.418104	4.879497	-2.316397	
С	-3.620111	2.860678	-2.861271	
С	-4.530902	3.603879	-3.609815	
С	-3.326559	5.621564	-3.060130	
н	-1.586890	5.373407	-1.805823	
н	-3.722832	1.779782	-2.786944	
н	-5.355882	3.110928	-4.121410	
н	-3.202711	6.699690	-3.142436	
н	-5.098341	5.573056	-4.275678	
С	-2.952296	2.891650	0.726060	
С	-5.152105	3.767141	2.220097	
С	-2.828294	3.966695	1.613652	
С	-4.196212	2.269517	0.588812	
С	-5.287627	2.703197	1.334612	
С	-3.920826	4.399204	2.354869	
н	-1.866990	4.464714	1.712276	
н	-4.316968	1.450213	-0.114305	
н	-6.254533	2.213043	1.231920	
н	-3.811151	5.235259	3.036345	
н	-6.001382	4.102897	2.807250	
С	-0.794721	-2.380351	-0.793007	
С	-1.817702	-3.131101	-3.290032	
С	-2.169318	-2.566104	-0.968344	

Ato	m x	У	z (contii	າued)
С	0.061302	-2.587981	-1.882776	
С	-0.446195	-2.951372	-3.123313	
С	-2.675009	-2.944467	-2.209940	
н	-2.846680	-2.419766	-0.130346	
н	1.128344	-2.469350	-1.727808	
н	0.235316	-3.103871	-3.956870	
н	-3.742074	-3.097199	-2.339726	
н	-2.209911	-3.425179	-4.260136	
С	0.776638	-0.194946	4.115505	
С	1.234059	1.181745	6.508630	
С	-0.221166	-0.114816	5.091570	
С	2.012077	0.411331	4.358295	
С	2.235607	1.099283	5.547605	
С	0.006986	0.569843	6.279030	
н	-1.173885	-0.597834	4.909986	
н	2.801966	0.339058	3.618985	
н	3.194139	1.577457	5.729033	
н	-0.780181	0.622967	7.024326	
н	1.401508	1.725181	7.432968	
С	2.005775	-2.861766	3.401133	
С	3.746576	-4.218975	5.106083	
С	1.508502	-3.756307	4.347823	
С	3.380750	-2.660064	3.303046	
С	4.253407	-3.346781	4.147711	
С	2.373619	-4.425673	5.203709	
н	0.438903	-3.922325	4.421084	
н	3.767799	-1.963261	2.564364	
н	5.324976	-3.193445	4.067516	
н	1.970445	-5.105184	5.948351	
н	4.417642	-4.740204	5.780998	
С	1.246760	-3.987112	0.808817	
С	2.381576	-6.414371	0.041878	
С	0.553081	-5.180342	1.007970	
С	2.508154	-4.014402	0.216408	
С	3.074353	-5.223722	-0.165397	
C	1.122715	-6.390739	0.626162	
H	-0.434847	-5.166355	1.465772	
H	3.044698	-3.076265	0.064938	
H	4.069337	-5.239846	-0.609858	
H	0.581247	-7.321264	0.785755	
н	2.832459	-7.357084	-0.246793	

Figure S14. Optimised Geometry (ω B97X-D/6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	642.14	kJ/mol	(ZPE)
Temperature Correction :	36.10	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	678.24	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-575.948163	au	(Electronic Energy + Enthalpy Correction)
Entropy :	454.64	J/mol•K	
Gibbs Energy :	-575.999792	au	(Enthalpy - T*Entropy)
C _v :	236.08	J/mol•K	

Cartesian Coordinates

Atom	х	У	z	
N	0 402100	0 120227	0 524266	
N	-0.403198	0.139227	0.534366	
С	-0.051072	-0.071434	1.854852	
С	-1.112538	0.357852	2.607327	
С	-2.122089	0.837443	1.720048	
С	-1.665513	0.695300	0.436073	
N	0.398900	-0.149132	-0.534689	
С	0.409866	-1.359766	-1.202487	
С	1.341617	-1.237894	-2.199851	
С	1.901892	0.072695	-2.129036	
С	1.305295	0.736017	-1.089308	
С	-2.267249	1.016576	-0.889824	
н	-2.361973	0.126097	-1.522275	
н	-1.664047	1.743021	-1.447125	
н	-3.263867	1.440474	-0.745873	
С	1.269279	-0.661678	2.217227	
н	1.399950	-1.663714	1.791780	
н	1.348923	-0.739900	3.304018	
н	2.103514	-0.048677	1.856274	
С	1.474656	2.111729	-0.539470	

12. (NC₄Me₄)₂ ωB97X-D

See reference 11 for experimentally determined approximate but non-crystallographic D_{2d} geometry.

Atom	x	у	z
н	2.236965	2.643746	-1.113451
Н	1.786804	2.095858	0.511460
н	0.543923	2.689122	-0.588831
С -	0.480997	-2.481097	-0.787262
н·	-0.334468	-3.331248	-1.457573
н·	-0.270933	-2.812863	0.236459
Н·	-1.539109	-2.196203	-0.821611
н	1.597451	-2.012612	-2.909829
н·	-3.085157	1.244250	1.996828
н·	-1.160943	0.331073	3.687408
Н	2.664117	0.485739	-2.775624

13. (PC₄Me₄)₂ ωB97X-D

NB: $(PC_4Ph_4)_2$ adopts a gauche geometry in the solid state.¹² The permethylated $(PC_4Me_4)_2^{13}$ has not been structurally characterised.

Figure S15. Optimised Geometry (@B97X-D/6-31G*/Gas Phase)

Zero Point Energy :	897.13	kJ/mol	(ZPE)
Temperature Correction :	53.83	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	950.96	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-1306.268333	au	(Electronic Energy + Enthalpy Correction)
Entropy :	574.22	J/mol•K	
Gibbs Energy :	-1306.333541	au	(Enthalpy - T*Entropy)
C _v :	360.05	J/mol•K	

Cartesian Coordinates

Atom	х	У	Z	
Р	0.691528	1.816533	-0.530255	
С	1.216429	2.092026	1.183485	
С	0.152000	1.951113	2.011530	
С	-1.081355	1.493533	1.343092	
С	-0.956950	1.296088	0.007889	
Р	1.768470	-0.071843	-0.958935	
С	0.908501	-1.327107	0.021231	
С	0.183635	-2.126187	-0.799319	
С	0.184892	-1.711072	-2.215765	
С	0.905165	-0.590598	-2.469119	
С	-1.997300	0.781683	-0.944224	
н	-2.020190	-0.315259	-0.929304	
н	-1.781028	1.083064	-1.972990	
н	-3.000575	1.144228	-0.694540	
С	2.611958	2.524541	1.526686	
н	2.826827	2.405419	2.592778	
н	2.781310	3.576702	1.267493	
н	3.352085	1.934127	0.973552	
С	0.150974	2.211456	3.491997	
Н	-0.173730	1.324280	4.049287	
Н	-0.543124	3.021067	3.748954	
Н	1.138467	2.496314	3.861005	
C	-2.332918	1.246089	2.138939	
Н	-2.621508	2.130303	2.719768	
Н	-2.188455	0.427532	2.855558	
Н	-3.175270	0.975024	1.498242	
С	1.112955	0.107337	-3.781226	
Н	2.098313	-0.121020	-4.205117	
Н	1.060760	1.195824	-3.658621	
Н	0.358307	-0.176987	-4.520358	
С	1.065903	-1.438842	1.509857	
Н	1.077451	-2.480910	1.847158	
Н	1.993002	-0.968003	1.849361	
Н	0.241577	-0.925107	2.020733	
C	-0.579778	-2.511652	-3.232487	
Н	-0.183265	-3.531411	-3.311128	
Н	-0.535499	-2.064703	-4.227768	
Н	-1.635980	-2.601160	-2.950770	
C	-0.606136	-3.328910	-0.361831	
Н	-0.460945	-3.547660	0.698600	
Н	-0.325677	-4.222336	-0.932359	
н	-1.680825	-3.173515	-0.521078	

Thermodynamic Properties at 298.15 K

Zero Point Energy :	887.55	kJ/mol	(ZPE)
Temperature Correction :	56.38	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	943.93	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-634,402058	au	(Electronic Energy + Enthalpy Correction)
Entropy :	602.15	J/mol•K	
Gibbs Energy :	-634.470439	au	(Enthalpy - T*Entropy)
C _v :	371.18	J/mol•K	

Cartesian Coordinates

Atom	x	у	z	
Sb	0.892104	2.364096	-0.805937	
С	1.257800	2.362788	1.300449	
С	0.193335	1.850211	1.959571	
С	-0.955705	1.338049	1.163083	
С	-0.896095	1.402138	-0.185560	
Sb	2.375758	-0.060133	-1.169321	
С	1.113854	-1.251523	0.055303	
С	0.188740	-1.886772	-0.698335	
С	0.140956	-1.615858	-2.161826	
С	1.031156	-0.741989	-2.685135	
С	-1.943669	0.891395	-1.137721	
Н	-2.252300	-0.129367	-0.880627	
н	-1.573451	0.859067	-2.165960	
н	-2.842904	1.521375	-1.128899	
С	2.520362	2.925768	1.890188	
н	2.628646	2.713144	2.958502	
Н	2.563565	4.015332	1.765723	
н	3.406194	2.517548	1.388222	
С	0.108633	1.739813	3.462733	
н	0.023202	0.692805	3.778528	
н	-0.773639	2.263478	3.849041	
Н	0.981824	2.164119	3.960606	
С	-2.129204	0.734056	1.895853	
Н	-2.591157	1.457926	2.577981	
Н	-1.824431	-0.125878	2.505599	
Н	-2.904065	0.391760	1.207168	
С	1.160687	-0.307557	-4.118659	
Н	2.077067	-0.706134	-4.572252	
Н	1.222769	0.785195	-4.195134	
Н	0.319792	-0.626714	-4.742344	
С	1.262339	-1.372764	1.548521	
н	1.645734	-2.358487	1.842351	
Н	1.943329	-0.617474	1.949979	
Н	0.299329	-1.227445	2.054046	
С	-0.926865	-2.314666	-2.967518	
Н	-0.844126	-3.403735	-2.874697	
Н	-0.873976	-2.072981	-4.030156	
н	-1.928664	-2.038858	-2.615689	
С	-0.821008	-2.840902	-0.108373	
н	-0.688383	-2.954078	0.969407	
н	-0.738694	-3.838374	-0.556977	
н	-1.848837	-2.498374	-0.281731	

14. (SbC₄Me₄)₂ @B97X-D

Only a single bistibolyl has been structurally characterised, viz. anti-[(SbC₄Me₂H₂-2,5)₂.14

16 | Dalton Trans., 2023, 52, Electronic Supporting Information

ELECTRONIC SUPPORTING INFORMATION

15. gauche-(AsC₄H₄)₂ – 4f ωB97X-D

Figure S17. Optimised Geometry (@B97X-D/6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K (ωB97X-D/6-31G*/Gas Phase)

Zero Point Energy :	330.82	kJ/mol	(ZPE)
Temperature Correction :	26.63	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	357.45	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4780.671957	au	(Electronic Energy + Enthalpy Correction)
Entropy :	399.47	J/mol•K	
Gibbs Energy :	-4780.717320	au	(Enthalpy - T*Entropy)
C _v :	167.10	J/mol•K	

Calculated electronic transitions^a

nm 🔻	strength	MO Component	
217.68	0.0415	HOMO-1 -> LUMO+1	92%
223.40	0.0618	HOMO -> LUMO+1	62%
		HOMO-4->LUMO	18%
269.52	0.0015	HOMO-3 -> LUMO	94%
286.62	0.1925	HOMO-1 -> LUMO	54%
		HOMO-2->LUMO	37%
295.45	0.0755	HOMO-2->LUMO	57%
		HOMO-1 -> LUMO	38%
312.48	0.0046	HOMO -> LUMO	95%
		I	[

UV/Vis Spectrum Figure S18. Calculated electronic spectrum (TD-DFT: ωB97X-D/6-31G*/Gas Phase)

Ator	m x	У	z
As	0.871286	1.234907	1.314455
As	-0.356890	-0.840464	1.788410
С	1.062317	-2.042959	1.248539
н	1.925952	-2.284469	1.857666
С	-1.142988	-1.207823	0.065715
Н	-2.055458	-0.748136	-0.294295
С	1.051848	1.136005	-0.603322
Н	1.818628	0.563637	-1.111175
С	-0.692106	2.328643	0.979775
Н	-1.324247	2.747952	1.754185
С	-0.458859	-2.171140	-0.579788
н	-0.767466	-2.580608	-1.538705
С	0.766394	-2.631710	0.073827
н	1.388160	-3.399109	-0.381485
С	0.160236	1.941101	-1.211095
н	0.131877	2.093921	-2.287311
С	-0.808263	2.599657	-0.334468
Н	-1.570419	3.260596	-0.740928

Cartesian Coordinates (@B97X-D/6-31G*/Gas Phase)

16. $anti-(AsC_4H_4)_2 - anti-4f$

Figure S19. Optimised Geometry (wB97X-D/6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	330.68	kJ/mol	(ZPE)
Temperature Correction :	26.61	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	357.29	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4780.672030	au	(Electronic Energy + Enthalpy Correction)
Entropy :	399.10	J/mol•K	
Gibbs Energy :	-4780.717352	au	(Enthalpy - T*Entropy)
C _v :	166.97	J/mol•K	

Calculated electronic transitions^a

The pale yellow colour of biarsolyls most likely arises from the HOMO (As lone-pair) \rightarrow LUMO (ring-based π *) UV transition having an absorption that tail slightly into the visible region.

Cartesian Coordinates

Aton	n x	у	z	
٨с	0 755904	0 0 1 0 9 0 2	0 156645	
AS	0.755604	0.949695	-0.150045	
As	-0.845250	-0.847512	0.352853	
С	-0.278878	-1.050673	2.195486	
Н	-0.664681	-0.460800	3.019400	
С	0.425237	-2.257390	-0.036851	
Н	0.617249	-2.647807	-1.030141	
С	0.339833	0.982472	-2.049307	
Н	0.791644	0.323136	-2.782072	
С	-0.542246	2.379906	0.001002	
Н	-0.813389	2.857904	0.935821	
С	0.975729	-2.744673	1.092513	
Н	1.674893	-3.578357	1.103772	
С	0.585528	-2.076344	2.331716	
Н	0.985716	-2.398520	3.290340	
С	-0.503101	1.991649	-2.346722	
н	-0.816647	2.226932	-3.360932	
С	-0.995931	2.763111	-1.208390	
н	-1.691510	3.587072	-1.351844	

17. gauche-(PC₄H₄)₂ ωB97X

Figure S21. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	358.80	kJ/mol	(ZPE)
Temperature Correction :	23.36	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	382.16	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-992.030057	au	(Electronic Energy + Enthalpy Correction)
Entropy :	366.38	J/mol•K	
Gibbs Energy :	-992.071664	au	(Enthalpy - T*Entropy)
C _v :	145.28	J/mol•K	

Atom	ı x	у	z
D	0 022470	0 61 5 1 0 0	1 200262
r C	2 164400	0.685630	1.560205
c	2.742511	0.547433	-0.070891
c	2.138774	-0.502151	-0.914235
С	1.109801	-1.166762	-0.333947
Ρ	-0.922470	0.615100	1.380263
С	-1.109801	1.166762	-0.333947
С	-2.138774	0.502151	-0.914235
С	-2.742511	-0.547433	-0.070891
С	-2.164400	-0.685630	1.147803
н	-2.508195	0.676357	-1.930945
н	-0.482477	1.950890	-0.773418
н	-3.581924	-1.139609	-0.452939
н	-2.425028	-1.388905	1.948308
н	0.482477	-1.950890	-0.773418
Н	2.508195	-0.676357	-1.930945
н	3.581924	1.139609	-0.452939
Н	2.425028	1.388905	1.948308

18. gauche-(AsC_4H_4)₂ gauche-4f ω B97X

Figure S22. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	353.21	kJ/mol	(ZPE)
Temperature Correction :	25.41	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	378.62	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4780.630247	au	(Electronic Energy + Enthalpy Correction)
Entropy :	392.75	J/mol•K	
Gibbs Energy :	-4780.674848	au	(Enthalpy - T*Entropy)
C _v :	157.53	J/mol•K	

Cartesian Coordinates

Ator	n x	у	z
٨	1 0/1120	0.640225	1 5 4 7 1 4 7
AS	1.041139	-0.040225	1.54/14/
C	2.211/8/	0.848761	1.159053
С	2.676224	0.774496	-0.101165
С	2.126485	-0.310247	-0.920320
С	1.218639	-1.097290	-0.316424
As	-1.041532	0.641528	1.546036
С	-1.217065	1.095835	-0.318371
С	-2.125332	0.308758	-0.921563
С	-2.676158	-0.774659	-0.101406
С	-2.212585	-0.847407	1.159242
н	-2.435012	0.437877	-1.956941
н	-0.708810	1.928878	-0.791608
н	-3.409967	-1.467601	-0.508978
н	-2.530485	-1.583238	1.890557
н	0.711297	-1.931408	-0.788730
н	2.435513	-0.439433	-1.955916
н	3.408458	1.468536	-0.509717
Н	2.527404	1.586838	1.889104

19. *gauche*-(SbC₄H₄)₂ ωB97X

Figure S23. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	347.46	kJ/mol	(ZPE)
Temperature Correction :	26.68	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	374.14	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-320.149525	au	(Electronic Energy + Enthalpy Correction)
Entropy :	408.63	J/mol•K	
Gibbs Energy :	-320.195928	au	(Enthalpy - T*Entropy)
C _v :	164.07	J/mol•K	

Atom	n x	У	z
sh	1 210927	0 722200	1 722501
C	2.393133	-0.988759	-1.227309
С	2.699310	-0.982050	0.081816
С	2.140295	0.078231	0.934394
С	1.338355	1.000014	0.375811
Sb	-1.222298	-0.734683	-1.730158
С	-1.352962	-1.009556	0.379926
С	-2.144783	-0.078191	0.937778
С	-2.689796	0.989074	0.084768
С	-2.384397	0.990465	-1.224634
н	-2.375378	-0.076877	2.003197
н	-0.896787	-1.816469	0.944311
н	-3.319100	1.757653	0.533812
н	-2.755293	1.743275	-1.913560
н	0.870558	1.800367	0.939698
н	2.370130	0.080068	1.999817
н	3.341131	-1.740264	0.530728
Н	2.777053	-1.734510	-1.916804

20. gauche-(BiC₄H₄)₂ ωB97X

Figure S24. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	344.36	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	27.33	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	371.69	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-320.210798	Enthalpy :
	J/mol•K	421.07	Entropy :
(Enthalpy - T*Entropy)	au	-320.258615	Gibbs Energy :
	J/mol•K	167.42	C _v :

21. *D*_{2d}-(NC₄H₄)₂ ωB97X

Figure S25. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	387.46	kJ/mol	(ZPE)
Temperature Correction :	20.26	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	407.71	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-418.835918	au	(Electronic Energy + Enthalpy Correction)
Entropy :	345.50	J/mol•K	
Gibbs Energy :	-418.875153	au	(Enthalpy - T*Entropy)
C _v :	125.22	J/mol•K	

Cartesian Coordinates

Ato	m x	У	z
	0 504007		
Ві	0.521307	2.172210	-0.660680
С	0.959587	2.297194	1.499042
С	-0.064963	1.817068	2.222386
С	-1.232797	1.242008	1.534163
С	-1.250861	1.192007	0.193230
Bi	2.115852	-0.306202	-0.937199
С	0.692495	-1.583408	0.144144
С	-0.139526	-2.209182	-0.702634
С	-0.063323	-1.913808	-2.143526
С	0.842545	-1.028905	-2.591320
Н	-0.891611	-2.916573	-0.350723
н	0.672226	-1.742896	1.218484
Н	-0.757269	-2.419166	-2.816621
н	0.942132	-0.783394	-3.644875
н	-2.073241	0.762453	-0.371341
Н	-2.052269	0.845342	2.134607
Н	-0.058690	1.835764	3.313134
н	1.838405	2.739489	1.959728

x	у	z
0 678260	0.002122	0 002002
0.078200	-0.092133	-0.002882
1.562/62	0.619365	0.772711
2.817663	0.150977	0.490352
2.684430	-0.878858	-0.487905
1.352349	-1.008277	-0.775249
-0.679145	0.086214	-0.004581
-1.350423	1.005972	-0.775125
-2.682646	0.881522	-0.486411
-2.818638	-0.148300	0.491583
-1.565309	-0.621715	0.772464
-3.480562	1.463999	-0.927487
-0.803981	1.650280	-1.449374
-3.740054	-0.499044	0.936991
-1.205278	-1.387505	1.444980
0.807631	-1.654425	-1.449112
3.484068	-1.458029	-0.930226
3.738248	0.505296	0.934651
1.200625	1.384661	1.444620
	x 0.678260 1.562762 2.817663 2.684430 1.352349 -0.679145 -1.350423 -2.682646 -2.818638 -1.565309 -3.480562 -0.803981 -3.740054 -1.205278 0.807631 3.484068 3.738248 1.200625	x y 0.678260 -0.092133 1.562762 0.619365 2.817663 0.150977 2.684430 -0.878858 1.352349 -1.008277 -0.679145 0.086214 -1.350423 1.005972 -2.682646 0.881522 -2.818638 -0.148300 -1.565309 -0.621715 -3.480562 1.463999 -0.803981 1.650280 -3.740054 -0.499044 -1.205278 -1.387505 0.807631 -1.654425 3.484068 -1.458029 3.738248 0.505296 1.200625 1.384661

22. gauche-P2Me4 @B97X

Figure S26. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

408.73 Zero Point Energy : kJ/mol (ZPE) (vibration + gas law + 26.30 kJ/mol Temperature Correction : rotation + translation) Enthalpy Correction : 435.04 kJ/mol (ZPE + temperature correction) (Electronic Energy + -842.117097 Enthalpy : au Enthalpy Correction) 378.67 Entropy : J/mol•K Gibbs Energy : -842.160098 au (Enthalpy - T*Entropy) C_v: 147.80 J/mol•K

23. gauche-As₂Me₄ @B97X

Figure S27. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	399.95	kJ/mol	(ZPE)
Temperature Correction :	27.91	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	427.86	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4630.720200	au	(Electronic Energy + Enthalpy Correction)
Entropy :	408.67	J/mol•K	
Gibbs Energy :	-4630.766608	au	(Enthalpy - T*Entropy)
C _v :	158.59	J/mol•K	

Cartesian Coordinates

Atom	n x	у	z
Р	0.503820	0.976037	-0.914639
Р	-0.503820	-0.976037	-0.914639
С	-0.988418	2.073103	-0.855733
н	-0.665135	3.117711	-0.799234
Н	-1.641003	1.868371	0.001138
н	-1.568699	1.950415	-1.775037
С	1.120627	1.197845	0.820515
н	1.596523	2.181008	0.901763
н	1.883993	0.446195	1.047908
Н	0.327474	1.135020	1.573318
С	-1.120627	-1.197845	0.820515
Н	-1.883993	-0.446195	1.047908
Н	-0.327474	-1.135020	1.573318
н	-1.596523	-2.181008	0.901763
С	0.988418	-2.073103	-0.855733
н	1.568699	-1.950415	-1.775037
Н	0.665135	-3.117711	-0.799234
Н	1.641003	-1.868371	0.001138

Atom	ı x	у	z
٨	0 450000	1 1 2 7 0 1 0	1 021274
AS	0.458885	1.127018	-1.021374
As	-0.459264	-1.127839	-1.021412
С	-1.268178	2.070484	-0.885962
Н	-1.081114	3.140983	-0.759518
Н	-1.868397	1.717569	-0.041591
н	-1.834430	1.927275	-1.810272
С	1.004084	1.340618	0.862260
Н	1.377345	2.359929	1.001577
н	1.819380	0.649052	1.096139
н	0.177972	1.170401	1.558225
С	-1.004291	-1.340793	0.862363
н	-1.819329	-0.648955	1.096358
н	-0.178011	-1.170742	1.558171
н	-1.377868	-2.359974	1.001807
С	1.268366	-2.070289	-0.885883
н	1.834628	-1.927208	-1.810209
н	1.081813	-3.140826	-0.759011
Н	1.868412	-1.716703	-0.041665

24. Sb₂Me₄ ωB97X

Figure S28. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	367.41	kJ/mol	(ZPE)
Temperature Correction :	29.40	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	396.81	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-170.285338	au	(Electronic Energy + Enthalpy Correction)
Entropy :	427.93	J/mol•K	
Gibbs Energy :	-170.333933	au	(Enthalpy - T*Entropy)
C _v :	173.03	J/mol•K	

25. Bi₂Me₄ ωB97X

Figure S29. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	387.70	kJ/mol	(ZPE)
Temperature Correction :	29.23	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	416.93	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-170.312258	au	(Electronic Energy + Enthalpy Correction)
Entropy :	436.93	J/mol•K	
Gibbs Energy :	-170.361874	au	(Enthalpy - T*Entropy)
C _v :	170.98	J/mol•K	

Cartesian Coordinates

Cartesian Coordinates

Atom	x	У	z
Sb	1.364215	-0.425307	-1.248471
Sb	-1.362367	0.424388	-1.247238
С	2.140686	1.566659	-0.838381
н	3.212939	1.504867	-0.632856
н	1.640775	2.004302	0.030168
Н	1.990026	2.218310	-1.703155
С	1.421000	-1.064050	0.829110
Н	2.424363	-1.420085	1.078895
Н	0.714520	-1.883754	0.989328
Н	1.162596	-0.235711	1.493568
С	-1.419739	1.063812	0.830077
Н	-0.709727	1.879917	0.992104
Н	-1.169646	0.233856	1.495414
Н	-2.422142	1.426474	1.074426
С	-2.141118	-1.566631	-0.837071
Н	-1.991231	-2.216091	-1.703844
Н	-3.213354	-1.503468	-0.632114
н	-1.641797	-2.007489	0.030041

Atom	x	У	z
р:	1 424220	0.249096	1 215024
DI D:	1.434230	-0.348986	-1.315824
BI	-1.440327	0.350378	-1.318568
C	2.074130	1.740573	-0.817177
Н	3.141076	1.750180	-0.578888
Н	1.517981	2.117055	0.045706
н	1.898930	2.405242	-1.667261
С	1.492290	-1.033330	0.818735
н	2.518694	-1.303582	1.083550
н	0.858236	-1.914757	0.948016
н	1.148416	-0.240124	1.486573
С	-1.495416	1.034048	0.816849
н	-0.854612	1.911540	0.946088
н	-1.152048	0.238339	1.481626
н	-2.519489	1.305491	1.086749
С	-2.070390	-1.741438	-0.816318
н	-1.899476	-2.404024	-1.669814
н	-3.137711	-1.751986	-0.578065
н	-1.514513	-2.114620	0.048023

22 | Dalton Trans., 2023, 52, Electronic Supporting Information

Parameter^a

As–As [Å]

Dalton Transactions

26. H₂As–AsH₂ ωB97X

Figure S30. Optimised Geometry (wB97X /6-31G*/Gas Phase)

Thermodynamic Properties at 298.15 K

Zero Point Energy :	78.41	kJ/mol	(ZPE)
Temperature Correction :	14.25	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	92.66	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-4473.674454	au	(Electronic Energy + Enthalpy Correction)
Entropy :	292.85	J/mol•K	
Gibbs Energy :	-4473.707710	au	(Enthalpy - T*Entropy)
C _v :	60.79	J/mol•K	

Cartesian Coordinates

Atom	х	у	Z
•	4 470007	0.246444	0.062.470
AS	1.179997	-0.346111	0.063470
н	1.579029	0.747796	1.053885
Н	1.510898	0.564450	-1.117355
As	-1.179997	0.346111	0.063470
Н	-1.579029	-0.747796	1.053885
Н	-1.510898	-0.564450	-1.117355

As– C_{α}^{a} [Å] 1.934 1.871 C_{α} - C_{β} [Å] 1.351 1.352 $C_{\beta}-C_{\beta'}$ [Å] 1.488 1.480 C_{α} -As-As- C_{α} [°] 9.37 21.68 167.76 154.46 87.19 C_{α} –As– C_{α} [°] 87.18 Natural Charge (As) 0.674 0.664 Natural Charge (C_a) -0.340 -0.337 al Ch 0 5 70 Nati

Natural Charge (C _β)	-0.570	-0.055
Löwden BO (As–As)	1.01	0.98
Löwden BO (As–Cα)	0.97	1.02
Löwden BO (C _α -C _β)	1.78	1.76
Löwden BO (Cβ-Cβ΄)	1.08	1.09
Dipole (Deb)	1.80	2.10
LUMO (eV)	0.88	0.46
HOMO (eV)	-7.74	-7.27
v _(AsAs) (cm ⁻¹ , uncorrected)		219

Illustrative Effect of Dispersion Correction for gauche-(AsC₄Me₄)₂

ωB97X

6-31G*

2.446

^aMean values where appropriate

General observations: Inclusion of the dispersion correction results in a modest lengthening of the As–As bond and contraction of As–C bonds with negligible effect on remaining C–C bonds. A negligible increase in the positive charge of the heavy atoms of the AsC4 ring (0.03 - 0.01) is noted while very modest decrease in As–As bond order (0.03) is absorbed by a comparable increase in bonding between arsenic and carbon. Taken together, the very small magnitude of these changes would appear to make it acceptable to omit the dispersion correction so as to allow the same functional (ω B97X) to be employed for (and within) the complete series (AC₄H₄)₂ (A = N, P, As, Sb, Bi).

ELECTRONIC SUPPORTING INFORMATION

ωB97X-D

6-31G*

2.462

Figure S31. Comparison of the energies and topologies of the frontier orbitals of $(AsC_4H_4)_2 vs (AsC_4Me_4)_2$. Other than raising the energies of all orbitals, permethylation has little effect on the topologies of the orbitals. Accordingly, similar bonding to a transition metal may be anticipated with the proviso that the permethylated derivative will be a stronger donor and poorer acceptor ligand.

Comparison of Basis Set Selection for anti-(AC ₄ H ₄) ₂ (A = As, P; @B97X-D))							
Parameter ^a	6-31G*	6-311+G**	6-311+G(3df,2p)	6-31G*	6-31G*	6-311+G**	6-311+G(3df,2p)
E =	As	As	As	P (gauche)	P(anti)	Р	Р
E–E [Å]	2.460	2.460	2.460	2.211	2.232	2.241	2.259
$E-C_{\alpha}{}^{\alpha}$ [Å]	1.938	1.936	1.936	1.806	1.811	1.810	1.795
C_{α} - C_{β} [Å]	1.348	1.345	1.345	1.352	1.352	1.349	1.348
C _β -C _{β'} [Å]	1.461	1.460	1.460	1.458	1.457	1.455	1.452
C_{α} -E-E- C_{α} [°]	101.0	94.4	93.9	68.3	88.6	89.1	88.4
	173.1	179.8	179.8	161.82	179.9	179.9	179.8
C _α –E–C _α [°]	85.6	85.5	85.5	90.5	89.9	89.7	90.1
LUMO (eV)	-0.03	-0.40	-0.40	0.12	0.09	-0.30	-0.24
HOMO (eV)	-8.05	-8.29	-8.27	-8.17	-8.01	-8.31	-8.22
v _(EE) (cm ⁻¹ , uncorrected ^b)	241	241	249	328	322	320	325
^a Mean values where appropriate. ^b For recommended scaling factors see <u>https://cccbdb.nist.gov/vibscalejust.asp</u> .							

Electronic Supporting Information

Figure S32. ¹H NMR Spectrum of (AsC₄Me₄)₂ (C₆D₆, 400 MHz, 25 °C)

Please do not adjust margins

26 | Dalton Trans., 2023, 52, Electronic Supporting Information

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

Figure S34. ESI-MS of (AsC₄Me₄)₂

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 52, 1-3 | 27

28 | Dalton Trans., 2023, 52, Electronic Supporting Information

This journal is © The Royal Society of Chemistry 2023

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 52, 1-3 | 29

Dalton Transactions

Figure S37. ESI-MS of [Mn₂{(AsC₄Me₄)₂ }(CO)₄(η-C₅H₄Me)₂]

30 | Dalton Trans., 2023, 52, Electronic Supporting Information

This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPORTING INFORMATION

Figure S38. Electronic spectrum of (AsC₄Me₄)₂ in hexane (2.7 mmol/L).

This journal is © The Royal Society of Chemistry 2023

Dalton Trans., 2023, 52, 1-3 | 31