Supporting Information

Exposing high-activity (111) facets CoO octahedral Loading MXene Quantum dots of Efficient and Stable Photocatalytic H₂ Evolution

Lan Ding*, Siyang Wang, Yaoyao Tang, Xinyi Chen, Hongjun Zhou*

State Key Laboratory of Heavy Oil Processing Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China

Fig. S1. SEM image and elements scanning for Ti_3C_2 MXene.

Fig. S2. Diameter distribution for N-MQDs.

Fig. S3. AFM image and 3D AFM rendered image for N-MQDs

Fig. S4. The height size distribution for N-MQDs.

Fig. S5. (a) PL spectra for N-MQDs. (b) excitation-emission matrix.

Fig. S6. SEM images for octahedral CoO.

Fig. S7. XRD patterns for Ti₃AlC₂ powder, Ti₃C₂ MXene, and N-MQDs.

Fig. S8. C 1s XPS spectra for CoO.

Fig. S9. The comparison of H₂ production rates with different environments.

Fig. S10. Time-dependent gas chromatograms H2 production for N-MQDs@CoO.

Fig. S11. (a) UV-visible DRS for the recycled catalyst after 4 cycles.

Fig. S12. The Bode-phase for pure CoO and N-MQDs@CoO.

Fig. S13. The SPV spectrum for pure CoO and N-MQDs@CoO.

Table S1. Entries in the table are fitted from EIS results

$R_{\rm s}/\Omega$	$R_{ m ct}/\Omega$	C_p
27.72	23660	4.41×10 ⁻⁴
18.65	16360	2.48×10 ⁻³
9.02	4375	2.11×10 ⁻⁴
4.48	1715	1.32×10 ⁻⁴
	R _s /Ω 27.72 18.65 9.02 4.48	R_s/Ω R_{ct}/Ω 27.722366018.65163609.0243754.481715

N-MQDs@CoO-7%	7.45	1044	1.91×10 ⁻³
---------------	------	------	-----------------------

Sample	lifetime	lifetime Pre-exponential		X_2
	τ(ns)	Factors B	lifetimes	
			τ(ns)	
CoO	$\tau_1 = 2.01$	B ₁ =3133.26	2.19	1.168
	$\tau_2 = 8.17$	B ₂ =36.55		
N-MQDs@CoO-1%	$\tau_1 = 3.26$	B ₁ =998.73	4.52	1.098
	$\tau_2 = 9.94$	$B_2=2042.98$		
N-MQDs@CoO-3%	$\tau_1\!\!=\!\!5.50$	B ₁ =921.90	6.39	1.046
	$\tau_2 = 10.09$	B ₂ =2059.96		
N-MQDs@CoO-5%	$\tau_1 = 7.22$	B ₁ =2906.34	8.43	1.063
	$\tau_2 = 15.98$	B ₂ =109.41		
N-MQDs@CoO-7%	$\tau_1 = 7.27$	$B_1 = 2788.07$	6.81	1.086
	$\tau_2 = 12.54$	B ₂ =274.42		

 Table S2. The average fluorescence lifetimes for CoO and N-MQDs@CoO

Photocatalyst	Light	Catalyst	H_2 evolution	Ref.
	source	dosage (mg)	rate	
N-MQDs@CoO	\geq 420 nm	10	81.6 μmol g ⁻¹ h ⁻¹	This work
$CoO@MoS_2$	>400 nm	50	21.4 µmol g ⁻¹ h ⁻¹	[1]
CoO/NiCo-LDH	>420 nm	40	1.5 mmol g ⁻¹ h ⁻¹	[2]
$CoO/g-C_3N_4$	>400 nm	50	50.2 µmol g ⁻¹ h ⁻¹	[3]
CoP/CoO	>420 nm	50	43.4 µmol g ⁻¹ h ⁻¹	[4]
a-CoO/GO	>400 nm	50	21.1 µmol g ⁻¹ h ⁻¹	[5]
rGO@CoO	\geq 420 nm	50	830 µmol h-1 g-1	[6]
CDs/CoO	>400 nm	50	33.4 µmol g ⁻¹ h ⁻¹	[7]

Table S3. Comparison for different CoO-based materials

References

[1] Shi, W., Guo, F., Li, M., Shi, Y., Shi, M., Yan, C., 2019. Constructing 3D submicrometer CoO octahedrons packed with layered MoS₂ shell for boosting photocatalytic overall water splitting activity. Appl. Surf. Sci. 473, 928-933.

[2] Wang, Y., Guo, S., Xin, X., Zhang, Y., Wang, B., Tang, S., Li, X., 2021. Effective interface contact on the hierarchical 1D/2D CoO/NiCo-LDH heterojunction for boosting photocatalytic hydrogen evolution. Appl. Surf. Sci. 549, 149108.

[3] Guo, F., Shi, W., Zhu, C., Li, H., Kang, Z., 2018. CoO and $g-C_3N_4$ complement each other for highly efficient overall water splitting under visible light. Appl. Catal. B Environ. 226, 412-420.

[4] Guo, F., Huang, X., Chen, Z., Sun, H., Chen, L., 2021. Anchoring CoP nanoparticles on the octahedral CoO by self-phosphating for enhanced photocatalytic overall water splitting activity under visible light. Chin. J. Chem. Eng. 40, 114-123.

[5] Lin, Z., Du, C., Yan, B., Yang, G., 2019. Two-dimensional amorphous CoO photocatalyst for efficient overall water splitting with high stability. J. Catal. 372, 299-310.

[6] Selvarajan, R., Vadivel, S., Saranya, A., Baraneedharan, P., Jayavel, R., 2022. Facile synthesis of rGO@CoO nanocomposites electrode material for photocatalytic hydrogen generation and supercapacitor applications. Inorg. Chem. Commun. 139, 109345.

[7] Shi, W., Guo, F., Zhu, C., Wang, H., Li, H., Huang, H., Liu, Y., Kang, Z., 2017. Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. J. Mater. Chem. A 5, 19800-19807.