Theoretical Study for Formation of Metal-oxo of First Transition Series with 14-TMC Ligand: Drives for "Oxo Wall"

Monika^{*a}, Manjeet Kumar^a, Somi^a, Arup Sarkar^b, Manoj Kumar Gupta^a and Azaj Ansari^{*a} *Email: <u>monika.raoji@gmail.com</u> and <u>ajaz.alam2@gmail.com</u>*

^aDepartment of Chemistry, Central University of Haryana, Mahendergarh, Haryana-123031, India.

^bDepartment of Chemistry, The University of Chicago 5735 South Ellis Avenue, Chicago, IL 60637

Scheme S1. Proposed mechanism for the formation of metal-oxo species.

Spin states	Energy	Spin	Energy		
	(kJ/mol)	states	(kJ/mol)		
[(14-TMC)(Cl)Cr	OOH] ⁺	[(14-TMC)(0	Cl)MnOOH] ⁺		
$^{4}Cr_{hs}$	0.0	⁵ Mn _{hs}	0.0		
$^{2}Cr_{ls}$	157.0	³ Mn _{is}	46.8		
		$^{1}Mn_{1s}$	144.8		
⁴ Cr _{hs} -ts	74.8	⁵ Mn _{hs} -ts	66.3		
$^{2}Cr_{1s}$ -ts	150.5	³ Mn _{is} -ts	76.5		
3 0 I	47.7		22.2		
$^{3}Cr_{hs}$ -Int	4/./	⁻ Min _{hs} -Int	33.2		
¹ Cr _{ls} -Int	90.2	² Mn _{ls} -Int	91.1		
[(14-TMC)(CI)Fe	OOH] ⁺	[(14-TMC)(0	CI)CoOOH] ⁺		
°Fe _{hs}	0.0	⁵ Co _{hs}	35.5		
⁴ Fe _{is}	100.8	⁵ Co _{is}	25.8		
2 Fe _{1s}	34.8	¹ Co _{1s}	0.0		
<i>c</i>		E			
°Fe _{hs} -ts	73.2	⁵ Co _{hs} -ts	99.8		
⁴ Fe _{is} -ts	94.3				
² Fe _{1s} -ts	83.8				
5		6~ -			
³ Fe _{hs} -Int	47.2	^o Co _{hs} -Int	142.7		
³ Fe _{is} -Int	47.8	⁴ Co _{is} -Int	61.4		
¹ Fe _{ls} -Int	168.5	² Co _{ls} -Int	71.5		
[(14-TMC)(Cl)Ni	OOH] ⁺	[(14-TMC)(Cl)CuOOH] ⁺			
⁴ Ni _{hs}	-	³ Cu _{hs}	0.0		
² Ni _{ls}	0.0	$^{1}Cu_{1s}$	79.1		
⁴ Ni _{hs} -ts	105.0	³ Cu _{hs} -ts	153.5		
⁵ Ni _{hs} -Int	174.0	⁴ Cu _{hs} -Int	124.9		
³ Ni _{is} -Int	246.6	² Cu _{ls} -Int	155.5		
¹ Ni _{ls} -Int	-				

 Table S1. B3LYP-D2 computed relative energies in kJ/mol.

Figure S1. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of chromium(III) hydroperoxo species.

Figure S2. B3LYP-D2 a) optimized structure of the ground state of chromium hydroperoxo (${}^{4}Cr_{hs}$); (b) optimized structure of the ground state of transition state ${}^{4}Cr_{hs}$ -ts (bond lengths are in Å).

Table S2. B3LYP-D2 computed selected structural parameters of the 14-TMC metal hydroperoxo species, transition states (O---O) and metaloxo.

			Bond le	ength (Å)					Во	nd Angel (°)			
Spin State	M-O	$M-N_1$	M-N ₂	M-N ₃	M-N ₄	M-N avg	M-Cl	0-0	Cl-M-O	M-O-O	0-0-Н	N_1 - M - N_3	N_2 -M- N_4
						[(14-TMC)	(Cl)CrOOH]+					
⁴ Cr _{hs}	1.943	2.147	2.183	2.196	2.161	2.173	2.398	1.515	172.0	127.5	99.7	175.0	174.6
$^{2}Cr_{ls}$	1.894	2.161	2.146	2.185	2.197	2.171	2.386	1.518	171.9	129.2	99.6	175.3	174.9
40	1 705	2 1 9 0	2 150	0.164	2 175	0.170	2 400	2 2 6 9	175 (140.5	(0.0	174.0	174.0
$2Cr_{hs}$ -ts	1.725	2.189	2.159	2.104	2.175	2.172	2.409	2.308	1/5.0	142.5	08.9	1/4.8	175.9
² Cr _{ls} -ts	1.686	2.205	2.163	2.138	2.188	2.173	2.389	1.8/8	172.8	137.0	89.9	1/6.6	1/5.8
³ Cr _{hs} -Int	1.715	2.167	2.167	2.176	2.176	2.171	2.419	-	176.8	-	-	174.5	174.5
¹ Cr _{ls} -Int	1.580	2.182	2.181	2.175	2.175	2.178	2.387		176.9	-	-	176.6	176.6
Exp. ¹	1.618												
_						[(14-TMC)	(Cl)MnOOH]+					
⁵ Mn _{hs}	1.916	2.132	2.318	2.179	2.313	2.236	2.344	1.511	169.9	127.8	99.6	173.7	173.7
³ Mn _{is}	1.885	2.117	2.162	2.175	2.130	2.146	2.351	1.519	171.2	127.1	99.3	175.8	175.3
$^{1}Mn_{ls}$	1.767	2.127	2.173	2.184	2.135	2.155	2.343	1.537	170.8	130.1	99.1	176.7	176.3
_													
⁵ Mn _{hs} -ts	1.748	2.171	2.153	2.140	2.158	2.156	2.433	1.854	176.8	156.5	92.6	174.0	174.2
³ Mn _{is} -ts	1.723	2.106	2.160	2.179	2.122	2.142	2.393	1.852	171.6	130.7	89.2	176.6	175.8
⁴ Mn _{bs} -Int	1 680	2 134	2,157	2 134	2,157	2 145	2.417	_	177 7	_	-	175 1	175 1
${}^{2}Mn_{1}$ -Int	1.637	2 143	2.154	2.131	2 153	2.148	2 370	_	177.1	_	-	175.6	175.5
iving int	1.057	2.115	2.131	2.115	2.155	[(14-TMC)	(Cl)FeOOH]+	177.1			175.0	175.5
⁶ Fe _{bs}	1.953	2.209	2.229	2.247	2.231	2.249	2.378	1.495	173.5	134.8	101.1	173.0	172.4
⁴ Fe:-	2 021	2 124	2 166	2 151	2 156	2 1 5 4	2 457	1 514	130.6	130.6	100.8	174.6	174 3
2 Fe _{1a}	1 858	2.137	2.157	2.107	2.109	2.127	2.344	1 522	171.4	126.5	99 3	176.5	175.9
	1.050	2.137	2.137	2.107	2.109	2.127	2.511	1.522	1/1.1	120.5	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	170.5	175.9
⁶ Fe _{hs} -ts	1.677	2.242	2.235	2.209	2.197	2.221	2.322	2.052	177.1	157.7	88.2	172.8	172.5
⁴ Fe _{is} -ts	1.718	2.137	2.150	2.140	2.124	2.139	2.385	1.822	177.1	159.3	93.9	174.9	174.7
² Fe _{ls} -ts	1.675	2.098	2.138	2.157	2.111	2.126	2.351	2.019	173.8	136.5	83.7	176.7	176.1
⁵ Fe _{hs} -Int	1.659	2.202	2.202	2.238	2.237	2.219	2.327	-	177.5	-	-	173.4	173.4
³ Fe _{is} -Int	1.657	2.195	2.235	2.207	2.242	2.219	2.362	-	178.1	-	-	175.4	175.4
¹ Fe _{1s} -Int	1.669	2.119	2.119	2.128	2.128	2.123	2.346	-	176.9	-	-	175.3	175.3

Exp. ²	1.646	-	-	2.067	2.069	2.109	2.117	-	-	-	-	-	-
						[(14-TM0	C)(Cl)CoOOH]+					
⁵ Co _{hs}	1.984	2.180	2.221	2.216	2.209	2.206	2.415	1.472	171.4	132.1	102.3	174.0	173.3
³ Co _{is}	1.917	2.063	2.243	2.117	2.235	2.164	2.384	1.511	172.0	128.6	100.1	175.6	175.2
¹ Co _{ls}	1.934	2.073	2.114	2.133	2.080	2.100	2.342	1.525	171.2	123.8	99.3	176.2	175.7
⁵ Co _{hs} -ts	1.674	2.226	2.226	2.212	2.212	2.219	2.286	1.921	176.2	162.5	92.3	173.1	173.1
⁶ Co _{hs} -Int	1.872	2.221	2.225	2.221	2.226	2.223	2.374	-	174.4	-	-	170.9	170.9
⁴ Co _{is} -Int	1.647	2.199	2.221	2.199	2.221	2.210	2.284	-	177.5	-	-	173.9	173.8
² Co _{ls} -Int	1.835	2.090	2.098	2.090	2.099	2.094	2.353	-	177.4	-	-	173.7	173.7
Exp. ³⁻⁴	1.72												
						[(14-TM	C)(Cl)NiOOH	+					
² Ni _{ls}	2.013	2.148	2.211	2.198	2.196	2.189	2.341	1.459	171.1	128.2	103.2	173.8	173.7
⁴ Ni _{hs} -ts	1.836	2.208	2.162	2.192	2.172	2.183	2.284	2.072	176.2	154.1	96.0	171.7	171.8
⁵ Ni _{hs} -Int	1.838	2.218	2.196	2.197	2.218	2.207	2.376	-	174.8	-	-	172.2	172.2
¹ Ni _{ls} -Int	1.853	2.174	2.173	2.184	2.184	2.179	2.289	-	177.1	-	-	171.5	171.5
						[(14-TM0	C)(Cl)CuOOH]+					
³ Cu _{hs}	2.291	2.150	2.181	2.177	2.183	2.173	2.501	1.455	171.9	130.8	104.7	171.1	171.5
¹ Cu _{hs}	1.919	2.207	2.328	2.254	2.326	2.279	2.262	1.475	168.1	125.5	102.8	174.0	174.4
³ Cu _{hs} -ts	2.004	2.242	2.190	2.228	2.218	2.219	2.358	2.036	175.4	135.5	85.4	171.4	171.4
⁴ Cu _{hs} -Int	2.031	2.189	2.190	2.188	2.188	2.189	2.420	-	176.3	-	-	170.5	170.5
² Cu _{ls} -Int	2.083	2.183	2.184	2.177	2.178	2.180	2.448	-	176.4	-	-	170.3	170.3

Spin state	Metal	01	02	
[(14-TMC)(Cl)CrOOH] ⁺				
4Cr _{hc}	3 179	_0.001	0.040	
$2\mathbf{Cr}_{1a}$	1 126	-0.045	0.040	
	1.120	-0.040	0.007	
$^{4}Cr_{b}$	2 812	-0.513	0.961	
$2Cr_{1}$ -ts	0.697	-0.281	0.501	
	0.077	-0.201	0.005	
$^{3}Cr_{ha}$ -Int	2 784	-0 569	_	
${}^{1}Cr_{1a}$ -Int	0	0.507	_	
[(1/-	$\frac{\nabla}{TMC}(C1)Mr$			
⁵ Mn	3 087	_0.010	0.042	
^{3}Mn	2.007	-0.010	0.042	
1 M n_1	2.098	0.042	0.023	
IVIIIIs	0.000	0.000	0.000	
5Mn ₁ -ts	3 3/1	0.269	0 668	
3 Mp. to	2 402	0.209	0.008	
ivill _{is} -tS	2.493	0.272	-0.349	
4Mp. Int	2 677	0 545		
$\frac{2}{2}$ Mp. Int	2.077	0.545	-	
	$\frac{1.103}{\mathbf{TMC}(\mathbf{Cl})\mathbf{E}_{2}}$	-0.001	-	
<u>[(14</u> -	-1MC)(CI)Fe	0.077	0.051	
⁴ Fe _{hs}	3.980	0.277	0.051	
² Fe _{is}	2.896	0.194	0.030	
² Fe _{ls}	1.039	0.089	-0.000	
6E.a. ta	2 275	0 5 2 9	0.960	
Fehs-ts	5.275	0.528	0.009	
re_{is} -ts	2.552	-0.131	0.0038	
-Fels-ts	1.309	0.575	-0.775	
5Eq. Int	2 091	0.632		
³ Fe _{hs} -Int	3.081	0.032	-	
¹ Fe _{is} -Int	1.313	0.793	-	
Fels-Int		0	-	
[(14-			0.002	
³ CO _{hs}	2.776	0.437	0.083	
$^{3}Co_{is}$	1.829	0.173	0.013	
¹ Co _{ls}	0.000	0.000	0.000	
50	0.1.51	0.570	0.500	
^S Co _{hs} -ts	2.164	0.673	0.798	
60 1	0.750	1 400		
⁴ Co _{hs} -Int	2.750	1.400	-	
⁻ Co _{is} -Int	1.855	0.884	-	
² Co _{ls} -Int	-0.026	0.974	-	
2	-TMC)(CI)Ni		0.011	
² Ni _{ls}	1.277	-0.099	-0.344	
1	0.005	0.020	0.072	
⁻ N _{1hs} -ts	0.936	0.928	0.853	

Table S3. B3LYP-D2 computed selected spin density values of the 14-TMC species, transition states, and metal-oxo.

⁵ Ni _{hs} -Int	1.545	1.571	-
³ Ni _{is} -Int	0.957	-1.156	-
[(14-	-TMC)(Cl)Cu	OOH] ⁺	
³ Cu _{hs}	0.519	0.474	0.123
$^{1}Cu_{ls}$	0.000	0.000	0.000
³ Cu _{hs} -ts	0.030	1.231	0.796
⁴ Cu _{hs} -Int	0.534	1.362	-
² Cu _{ls} -Int	-0.165	1.425	-

Figure S3. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha corresponding to the ground state a) ${}^{4}Cr_{hs}$; b) ${}^{4}Cr_{hs}$ -ts of the chromium(III) hydroperoxo species (energies are given in eV).

Figure S4. Spin natural orbitals and their occupations (noted in parenthesis) of ${}^{4}Cr_{hs}$, and ${}^{4}Cr_{hs}$ -ts.

Spin State	M-O	01-02			
[(14-TMC)(Cl)CrOOH] ⁺					
$^{4}Cr_{hs}$	0.218	0.246			
⁴ Cr _{hs} -ts	0.374	0.054			
³ Cr _{hs} -Int	0.403	-			
[(14-TMC)	(Cl)MnOOH] ⁺ ; I	ISpecies			
⁵ Mn _{hs}	0.198	0.245			
⁵ Mn _{hs} -ts	0.443	0.180			
${}^{4}Mn_{hs}$ -Int	0.624	-			
[(14-TMC)	(Cl)FeOOH] ⁺ ; II	I Species			
⁶ Fe _{hs}	0.260	0.249			
⁴ Fe _{is} -ts	0.556	0.107			
⁵ Fe _{hs} -Int	0.631	-			
[(14-TMC)(Cl)CoOOH] ⁺ ; IV Species					
¹ Co _{ls}	0.152	0.244			
⁵ Co _{hs}	0.539	0.147			
⁴ Co _{is} -Int	0.640	-			
[(14-TMC])(Cl)NiOOH] ⁺ ; V	' Species			
² Ni _{ls}	0.101	0.246			
⁴ Ni _{hs} -ts	0.202	0.143			
² Ni _{ls}	0.423	-			
[(14-TMC)	$(Cl)CuOOH]^+$; V	I Species			
³ Cu _{hs}	0.106	0.306			
³ Cu _{hs} -ts	0.158	0.088			
⁴ Cu _{hs} -Int	0.177	-			

 Table S4. Computed Wiberg bond indices of chromium-copper species.

Figure S5. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of manganese hydroperoxo species.

Figure S6. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha spin corresponding to the ground state ${}^{5}Mn_{hs}$ of the manganese hydroperoxo species (energies are given in eV).

Figure S7. Spin natural orbitals and their occupations (noted in parenthesis) of ${}^{5}Mn_{hs}$, and ${}^{5}Mn_{hs}$ -ts.

Figure S8. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of iron(III) hydroperoxo species.

Figure S9. B3LYP-D2 (a) optimized structure of the ground state of iron(III) hydroperoxo (${}^{6}Fe_{hs}$); (b) optimized structure of the ground state of the transition state of iron(III) hydroperoxo (${}^{6}Fe_{hs}$ -ts); (c) scheme for the formation of π bond between iron and oxygen center by the involvement of O-O bond electrons and iron center.

Figure S10. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha spin corresponding to the ground state of the iron(III) hydroperoxo a) ${}^{6}Fe_{hs}$; b) ${}^{6}Fe_{hs}$ -ts (energies are given in eV).

Figure S11. Spin natural orbitals and their occupations (noted in parenthesis) of ${}^{6}Fe_{hs}$, and ${}^{6}Fe_{hs}$ -ts.

Figure S12. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of cobalt(III) hydroperoxo species.

Figure S13. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha and beta spin corresponding to the ground state ${}^{1}Co_{1s}$ of the cobalt(III) hydroperoxo species (energies are given in eV).

Figure S14. Spin natural orbitals and their occupations (noted in parenthesis) of ⁵Co_{hs}-ts.

Figure S15. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of nickel(III) hydroperoxo.

Figure S16. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha and beta spin corresponding to the ground state ${}^{2}Ni_{ls}$ of the species V(energies are given in eV).

Figure S17. Spin natural orbitals and their occupations (noted in parenthesis) of $^2Ni_{ls}$ and $^4Ni_{hs}$ -ts of species V.

Figure S18. B3LYP-D2 computed energy surface (ΔG in kJ mol⁻¹) for the O---O bond cleavage of copper(III) hydroperoxo species.

Figure S19. Computed eigenvalue plot incorporating energies computed for *d*-based orbitals for alpha and beta spin corresponding to the ground state ${}^{3}Cu_{hs}$ of the copper(III) hydroperoxo species (energies are given in eV).

Figure S20. Spin natural orbitals and their occupations (noted in parenthesis) of $^5\mathrm{Cu}_{hs}$ and $^5\mathrm{Cu}_{hs}\text{-ts}.$

Scheme S2. Pi interaction of the metal d orbitals with that of the oxygen p orbitals.

Table S5. Computed stretching frequency of M-O bond in Metal-oxo species

Metal-oxo	v (cm ⁻¹)
³ Cr _{hs} -Int	558
⁴ Mn _{hs} -Int	869
⁵ Fe _{hs} -Int	872
⁴ Co _{is} -Int	849
⁵ Ni _{hs} -Int	499
⁴ Cu _{hs} -Int	376

Figure S21. B3LYP-D2 computed energy surface for the formation of metal-oxo from 14-TMC metal hydroperoxo chromium (red), manganese (orange), iron (blue), cobalt (purple), nickel (green), and copper (dark red).

References

- 1. J. Cho, J. Woo and W. Nam, J. Am. Chem. Soc., 2012, 134, 11112-11115.
- J. U. Rohde, J. H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam and L. Que Jr., *Science*, 2003, 299, 1037-1039.
- B. Wang, Y. M. Lee, W. Y. Tcho, S. Tussupbayev, S. T. Kim, Y. Kim, M. S. Seo, K.
 B. Cho, Y. Dede, B. C. Keegan, T. Ogura, S. H. Kim, T. Ohta, M. H. Baik, K. Ray, J. Shearer and W. Nam, *Nat Commun.*, 2017, 8, 14839-14849.
- 4. H. Hirao, D Kumar, L. Que, Jr. and S Shaik, J. Am. Chem. Soc., 2006, 128, 8590-8606.