Supporting Information for

A Series of Polyoxometalates-Based COF Composites by One-Pot

Mechanosynthesis for Thioether to Sulfone

Yanyan Guo, Xiaohui Liu, Xiaodong Liu, Na Xu,* Xiuli Wang*

College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China

Table of Contents

Table of Contents
Experimental section4
Fig. S1 Schematic illustration for the syntheses of POMs@TpPa-14
Fig. S2 (a) The pictures of TpPa–1; (b) PW ₁₂ @TpPa–1; (c) PMo ₁₂ @TpPa–14
Fig. S3 PXRD patterns of PMo ₁₂ , TpPa–1 and PMo ₁₂ @TpPa–15
Fig. S4 IR spectra of monomer, TpPa-1, PMo ₁₂ @TpPa-1 and PMo ₁₂ 5
Fig. S5 IR spectra of monomer, TpPa–1, PMo ₁₂ @TpPa–1 and PMo ₁₂ in CYH and DCM
Fig. S6 TGA of TpPa–1, PMo ₁₂ @TpPa–1 and PMo ₁₂ 6
Fig. S7 TGA of TpPa–1, SiW ₁₂ @TpPa–1 and PMo ₁₂ 7
Fig. S8 N ₂ sorption isotherms of TpPa–1 and different PMo ₁₂ added amounts of PMo ₁₂ @TpPa–1 measured at 77 K7
Fig. S9 The pore size distribution of TpPa-1 and PMo ₁₂ (25%)@TpPa-18
Fig. S10 The pore size distribution of TpPa–1 and PW ₁₂ (27%)@TpPa–18
Fig. S11 (a) SEM characterization of TpPa–1; (b) SEM characterization of PW ₁₂ @TpPa–1
Fig. S12 (a–d) TEM characterization of PW ₁₂ (22%)TpPa–1; (e–h) TEM characterization of PW ₁₂ (32%)TpPa–1; (i–m) EDS characterization of PW ₁₂ (22%)@TpPa–1; (n–r) EDS characterization of PW ₁₂ (32%)@TpPa–1
Fig. S13 FT–IR spectra of $PW_{12}(27\%)$ @TpPa–1 before and after three runs catalytic reactions in the characteristic regions
Fig. S14 Reaction rate plots for MPS using PW ₁₂ (27%)@TpPa-1 as the catalyst10
Fig. S15 PXRD spectra of PW ₁₂ (27%)@TpPa-1 before and after cycle catalytic reactions
Fig. S16 Hot filtration of PW ₁₂ (27%)@TpPa-1 in the oxidation of MPS11
Fig. S17 Raman spectra of $PW_{12}(27\%)$ @TpPa-1 before and after treating with H_2O_2 .
Table S1 Physicochemical properties of PW ₁₂ @TpPa-1 composites12
Table S2 Comparison with other reported catalysts for MPS oxidation
Table S3 The oxidation of MPS using different catalystsa. 13
Table S4 Selective oxidation of various sulfides to sulfoxide ^a . 13

Experimental section Materials and methods

1, 3, 5–triformylphloroglucinol (Tp), p–phenylenediamine (Pa–1) were purchased from Jilin Research and Extension Technology Company. Keggin–type H₃PMo₁₂O₄₀ (PMo₁₂), H₃PW₁₂O₄₀ (PW₁₂), H₃SiW₁₂O₄₀ (SiW₁₂), mesitylene, 1,4–dioxane were all purchased by Aladdin Reagents. Powder X–ray diffraction (PXRD) patterns of the samples were measured by a D/teX Ultra diffractometer with Cu Kα radiation ($\lambda =$ 1.5418 Å). FT–IR spectra were carried out on a Perkin Elmer Spectrum. Thermogravimetric analyses were conducted using a Hitachi TG/DTA7200 analyzer in an N₂–flow atmosphere with a heating rate of 10 °C/min at a temperature of 25–800 °C. Scanning electron microscope images (SEM) and energy–dispersive spectroscopy (EDS) were conducted on a cold field–emission scanning electron microscope (S– 4800). Transmission electron microscope (TEM) (JEOL JEM–2100F, 200 kV) equipped with EDS (X–MaxN 80T IE250). The planetary ball mill (QM–3SP04) is from Nanjing Nanda Instrument Company. The catalytic reaction was analyzed by using a Shimadzu Tech–comp GC–7900 gas chromatograph (GC) with a flame ionization detector equipped with a TM–5 Sil capillary column.

Fig. S1 Schematic illustration for the syntheses of POMs@TpPa-1.

Fig. S2 (a) The pictures of TpPa-1; (b) PW₁₂@TpPa-1; (c) PMo₁₂@TpPa-1.

Fig. S3 PXRD patterns of PMo₁₂, TpPa-1 and PMo₁₂@TpPa-1.

Fig. S4 IR spectra of monomer, TpPa-1, PMo₁₂@TpPa-1 and PMo₁₂.

Fig. S5 IR spectra of monomer, TpPa-1, PMo₁₂@TpPa-1 and PMo₁₂ in CYH and DCM.

Fig. S7 TGA of TpPa-1, SiW₁₂@TpPa-1 and PMo₁₂.

Fig. S8 N_2 sorption isotherms of TpPa-1 and different PMo₁₂ added amounts of PMo₁₂@TpPa-1 measured at 77 K.

Fig. S9 The pore size distribution of TpPa-1 and PMo₁₂(25%)@TpPa-1.

Fig. S10 The pore size distribution of TpPa-1 and PW₁₂(27%)@TpPa-1.

Fig. S11 (a) SEM characterization of TpPa-1; (b) SEM characterization of PW₁₂@TpPa-1.

Fig. S12 (a–d) TEM characterization of $PW_{12}(22\%)TpPa-1$; (e–h) TEM characterization of $PW_{12}(32\%)TpPa-1$; (i–m) EDS characterization of $PW_{12}(22\%)@TpPa-1$; (n–r) EDS characterization of $PW_{12}(32\%)@TpPa-1$; (n–r) EDS characterization of $PW_{12}(32\%)@TpPa-1$.

Fig. S13 FT–IR spectra of $PW_{12}(27\%)$ @TpPa–1 before and after three runs catalytic reactions in the characteristic regions.

Fig. S14 Reaction rate plots for MPS using PW₁₂(27%)@TpPa-1 as the catalyst.

Fig. S15 PXRD spectra of $PW_{12}(27\%)$ @TpPa-1 before and after cycle catalytic reactions.

Fig. S16 Hot filtration of $PW_{12}(27\%)$ @TpPa-1 in the oxidation of MPS.

Fig. S17 Raman spectra of $PW_{12}(27\%)$ @TpPa-1 before and after treating with H_2O_2 .

	J 1 1	120 1	1	
Composites	$S_{BET} (m^2/g)$	Vtotal (cc/g)	Average pore	size
			(nm)	
TpPa-1	91.81	0.28	6.16	
PW12(22%)@TpPa-1	11.41	0.11	19.95	
PW12(27%)@TpPa-1	21.52	0.10	8.84	
PW12(32%)@TpPa-1	9.60	0.08	17.42	
PMo12(20%)@TpPa-1	28.39	0.21	14.61	
PMo12(25%)@TpPa-1	25.22	0.13	10.1	
PMo12(30%)@TpPa-1	26.05	0.15	11.5	

Table S1 Physicochemical properties of PW₁₂@TpPa-1 composites.

Table S2 Comparison with other reported catalysts for MPS oxidation.

Cat.	Temp. (°C)	Time (min)	Conv. (%)	Sel. (%)	Ref
PW ₁₂ @TpPa-1	60	60	99.5	100	This work
$(Hbiz)_{12}[(P_2Co_2Mo^V_4O$	60	80	99.1	98.7	1
$_{8})_{2}(P_{2}Mo^{V}_{2}O_{8})_{4}(Pb \subset P_{6})_{6}$					
$Co_2Mo^{V_2}Mo^{VI}_{14}O_{73})_4]$					
ca.129H ₂ O					
VO-TAPT-2,3-DHTA	25	240	93.0	90.0	2
COFs					
KTaxTi1–xO ₃	60	240	87.0	80.0	3
Ag–DTMH	50	120	99.0	94.0	4
Ni–DTMH	40	180	96.0	63.0	4
Co–DTMH	40	180	31.0	99.0	4
V/MCM-41	25	360	80.0	93.0	5

		C		$a_1b_0(1)$
Entry	Catalyst	System	Conv. (%)	Sel. ⁶ (%)
1	PW12(22%)@TpPa-1	Heterogeneous	92.3	87.0
2	PW12(32%)@TpPa-1	Heterogeneous	95.2	97.8
3	PW12(37%)@TpPa-1	Heterogeneous	89.4	97.0
4	^d PW ₁₂ (27%)@TpPa-1	Heterogeneous	92.0	99.1
5	°PW12(27%)@TpPa-1	Heterogeneous	93.5	94.8
6	^f PW ₁₂ (27%)@TpPa-1	Heterogeneous	99.5	100
7	^g PW ₁₂ (27%)@TpPa-1	Heterogeneous	92.4	98.3
8	^h PW ₁₂ (27%)@TpPa-1	Heterogeneous	83.1	89.0
9	PMo12(20%)@TpPa-1	Heterogeneous	74.5	77.0
10	PMo12(30%)@TpPa-1	Heterogeneous	86.6	86.5
11	SiW ₁₂ (14%)@TpPa-1	Heterogeneous	76.0	44.4
12	SiW ₁₂ (18%)@TpPa-1	Heterogeneous	89.4	81.5
13	SiW ₁₂ (23%)@TpPa-1	Heterogeneous	85.5	68.4
14	SiW ₁₂ (28%)@TpPa-1	Heterogeneous	69.0	60.0

Table S3 The oxidation of MPS using different catalystsa.

0.7mmol % Cat. $1.3 \text{ mmol } H_2O_2$ 3 ml CYH, 60 ℃

^aReaction conditions: 0.5 mmol MPS; 0.7 mmol% catalyst; 3 mL CYH; 1.3 mmol H₂O₂; 60 °C; 60 min. ^bSelectivity to sulfone, the byproduct was sulphones. ^cSelectivity to sulfoxides, the byproduct was sulphones. ^{d-h}The amount of catalyst added was 0.5 mmol%, 0.6 mmol%, 0.7 mmol%, 0.8 mmol%, and 0.9 mmol% respectively.

Table S4 Selective oxidation of various sulfides to sulfoxide ^a .						
Entry	Substrate	Temp. (°C)	Time (min)	Conv. (%)	Sel. ^b (%)	
1	S_	60	60	99.0	99.0	
2		60	60	97.0	98.0	
3	Cl S	60	60	85.2	92.7	
4		60	60	97.8	98.2	

G4 G 1 ... · 1 .· c • 10.1 (10 1

^aReaction conditions: 0.5 mmol sulfide; 0.7 mmol% catalyst; 3 mL CYH; 1.3 mmol H₂O₂; 60 °C; 60 min. ^bSelectivity to sulfone, the byproduct was sulfoxides.

references

1. X. Liu, N. Xu, X. Liu, Y. Guo, X. Wang, Chem Commun (Camb)., 2022, 58, 12236-12239.

H. Vardhan, G. Verma, S. Ramani, A. Nafady, A. M. Al–Enizi, Y. Pan, Z. Yang,
 H. Yang, S. Ma, ACS Appl Mater Inter., 2019, 11, 3070–3079.

3. C. Leal Marchena, G. Pecchi, L. Pierella, Molecular Catalysis., 2020, 482.

4. X. Huang, X. Gu, Y. Qi, Y. Zhang, G. Shen, B. Yang, W. Duan, S. Gong, Z. Xue, Y. Chen, *Chin. J. Chem.*, 2021, **39**, 2495-2503.

5. T. Ben Zida, I. Khedhera, J.M. Fraileb. *Journal of Chemical Research.*, 2013, **37(12)**, 766-773.