Supporting Information for

A Series of Polyoxometalates–Based COF Composites by One–Pot

Mechanosynthesis for Thioether to Sulfone

Yanyan Guo, Xiaohui Liu, Xiaodong Liu, Na Xu,* Xiuli Wang*

College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China

Table of Contents

Experimental section Materials and methods

1, 3, 5–triformylphloroglucinol (Tp), p–phenylenediamine (Pa–1) were purchased from Jilin Research and Extension Technology Company. Keggin–type $H_3PMo_{12}O_{40}$ (PMo₁₂), H₃PW₁₂O₄₀ (PW₁₂), H₃SiW₁₂O₄₀ (SiW₁₂), mesitylene, 1,4–dioxane were all purchased by Aladdin Reagents. Powder X–ray diffraction (PXRD) patterns of the samples were measured by a D/teX Ultra diffractometer with Cu K α radiation (λ = 1.5418 Å). FT–IR spectra were carried out on a Perkin Elmer Spectrum. Thermogravimetric analyses were conducted using a Hitachi TG/DTA7200 analyzer in an N₂–flow atmosphere with a heating rate of 10 °C/min at a temperature of 25–800 °C. Scanning electron microscope images (SEM) and energy–dispersive spectroscopy (EDS) were conducted on a cold field–emission scanning electron microscope (S– 4800). Transmission electron microscope (TEM) (JEOL JEM–2100F, 200 kV) equipped with EDS (X–MaxN 80T IE250). The planetary ball mill (QM–3SP04) is from Nanjing Nanda Instrument Company. The catalytic reaction was analyzed by using a Shimadzu Tech–comp GC–7900 gas chromatograph (GC) with a flame ionization detector equipped with a TM–5 Sil capillary column.

Fig. S1 Schematic illustration for the syntheses of POMs@TpPa–1.

Fig. S2 (a) The pictures of TpPa–1; (b) $PW_{12}@TpPa-1$; (c) $PMo_{12}@TpPa-1$.

Fig. S3 PXRD patterns of PMo₁₂, TpPa–1 and PMo₁₂@TpPa–1.

Fig. S4 IR spectra of monomer, TpPa–1, PMo₁₂@TpPa–1 and PMo₁₂.

Fig. S5 IR spectra of monomer, TpPa–1, PMo₁₂@TpPa–1 and PMo₁₂ in CYH and DCM.

Fig. S7 TGA of TpPa-1, $SiW_{12}@TpPa-1$ and PMo_{12} .

Fig. S8 N₂ sorption isotherms of TpPa–1 and different PMo_{12} added amounts of PMo_{12} @TpPa–1 measured at 77 K.

Fig. S9 The pore size distribution of TpPa–1 and PMo₁₂(25%)@TpPa–1.

Fig. S10 The pore size distribution of TpPa–1 and $PW_{12}(27%)@TpPa-1$.

Fig. S11 (a) SEM characterization of TpPa–1; (b) SEM characterization of PW₁₂@TpPa–1.

Fig. S12 (a−d) TEM characterization of PW12(22%)TpPa–1; (e−h) TEM characterization of PW12(32%)TpPa–1; (i−m) EDS characterization of PW12(22%)@TpPa–1; (n−r) EDS characterization of $PW_{12}(32\%)@TpPa-1$.

Fig. S13 FT–IR spectra of PW₁₂(27%)@TpPa–1 before and after three runs catalytic reactions in the characteristic regions.

Fig. S14 Reaction rate plots for MPS using $PW_{12}(27\%)@TpPa-1$ as the catalyst.

Fig. S15 PXRD spectra of PW₁₂(27%)@TpPa–1 before and after cycle catalytic reactions.

Fig. S16 Hot filtration of PW12(27%)@TpPa–1 in the oxidation of MPS.

Fig. S17 Raman spectra of $PW_{12}(27\%)@TpPa-1$ before and after treating with H_2O_2 .

		\sim 1		
Composites	$SBET$ (m ² /g)	Vtotal (cc/g)	Average pore	size
			(nm)	
$TpPa-1$	91.81	0.28	6.16	
$PW_{12}(22\%)@TpPa-1$	11.41	0.11	19.95	
$PW_{12}(27%)@TpPa-1$	21.52	0.10	8.84	
$PW_{12}(32\%)@TpPa-1$	9.60	0.08	17.42	
$PMo_{12}(20%)@TpPa-1$	28.39	0.21	14.61	
$PMo_{12}(25%)@TpPa-1$	25.22	0.13	10.1	
$PMo_{12}(30\%)$ @TpPa-1	26.05	0.15	11.5	

Table S1 Physicochemical properties of $PW_{12}(\mathcal{A})$ TpPa–1 composites.

Table S2 Comparison with other reported catalysts for MPS oxidation.

Cat.	Temp. $(^{\circ}C)$	Time (min)	Conv. $(\%)$	Sel. $(\%)$	Ref
PW_{12} @TpPa-1	60	60	99.5	100	This work
$(Hbiz)_{12}[(P_2Co_2MoV_{4}O]$	60	80	99.1	98.7	1
$_8)_2(P_2MoV_2O_8)_4(PbCP_6)$					
$Co_2MoV_{2}MoV_{14}O_{73})_{4}$.					
ca.129 $H2O$					
VO-TAPT-2,3-DHTA	25	240	93.0	90.0	2
COFs					
$KTaxTi1-xO3$	60	240	87.0	80.0	3
$Ag-DTMH$	50	120	99.0	94.0	4
Ni-DTMH	40	180	96.0	63.0	4
$Co-DTMH$	40	180	31.0	99.0	4
$V/MCM-41$	25	360	80.0	93.0	5

Table S3 The oxidation of MPS using different catalystsa.

+

 S' $\sim S$

S

O

 $\left\{\left\{\right\}$ **1.3** mmol H_2O_2

^O ^O 0.7mmol % Cat.

3 ml CYH, 60 ℃

^aReaction conditions: 0.5 mmol MPS; 0.7 mmol% catalyst; 3 mL CYH; 1.3 mmol H₂O₂; 60 °C; 60 min. bSelectivity to sulfone, the byproduct was sulphones. "Selectivity to sulfoxides, the byproduct was sulphones. ^{d-h}The amount of catalyst added was 0.5 mmol%, 0.6 mmol%, 0.7 mmol%, 0.8 mmol%, and 0.9 mmol% respectively.

Table S4 Selective oxidation of various sulfides to sulfoxide ^a .								
Entry	Substrate	Temp. $(^{\circ}C)$	Time (min)	Conv. $(\%)$	Sel. b (%)			
1		60	60	99.0	99.0			
$\overline{2}$		60	60	97.0	98.0			
3	C1	60	60	85.2	92.7			
$\overline{4}$	Cl	60	60	97.8	98.2			

Table S4 Selective oxidation of various sulfides to sulfoxide^a .

^aReaction conditions: 0.5 mmol sulfide; 0.7 mmol% catalyst; 3 mL CYH; 1.3 mmol H₂O₂; 60 °C; 60 min. ^bSelectivity to sulfone, the byproduct was sulfoxides.

references

1. X. Liu, N. Xu, X. Liu, Y. Guo, X. Wang, *Chem Commun (Camb).*, 2022, **58**, 12236-12239.

2. H. Vardhan, G. Verma, S. Ramani, A. Nafady, A. M. Al–Enizi, Y. Pan, Z. Yang, H. Yang, S. Ma, *ACS Appl Mater Inter.,* 2019, **11**, 3070–3079.

3. C. Leal Marchena, G. Pecchi, L. Pierella, *Molecular Catalysis.,* 2020, **482**.

4. X. Huang, X. Gu, Y. Qi, Y. Zhang, G. Shen, B. Yang, W. Duan, S. Gong, Z. Xue, Y. Chen, *Chin. J. Chem.,* 2021, **39**, 2495-2503.

5. T. Ben Zida, I. Khedhera, J.M. Fraileb. *Journal of Chemical Research.,* 2013, **37(12)**, 766-773.