Electronic supplementary information for

Lattice Strain Controlled Ni@NiCu Efficient Anode

Catalysts for Direct Borohydride Fuel Cell

Bihao Hu^a, Yuxin Xie^a, Ying Yang^a, Jiazhi Meng^a, Jinliang Cai^a, Changguo Chen^a,

Danmei Yu^a, Xiaoyuan Zhou^b**

^a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing,

401331, P.R. China

^b College of Physics, Chongqing University, Chongqing, 401331, P.R. China

Corresponding Authors

***Danmei Yu's** e-mail: yudanmei-1@163.com.

***Xiaoyuan Zhou's** e-mail: xiaoyuan2013@cqu.edu.cn.

Notes: The authors declare no competing financial interest.

Fig. S1 Schematic diagram of the preparation catalysts.

Fig. S2 (a) The SEM images and (b) the enlarged view of the Ni catalyst; (c) the SEM images and (d) the enlarge view of the Ni catalyst after oxidation (Ni-ox).

Fig. S3 (a) The SEM image of Ni@NiCu and (b-d) corresponding EDS element distribution mappings.

Fig. S4 (a-d) Processed lattice fringe images of boxes 1, 2, 3 and 4 in Fig. 2(a), respectively.

Fig. S5 SEM-EDS patterns of (a) Ni@Ni-10, (b)Ni@Ni-20, (c)Ni@Ni-30. (d) The correlation curves between the Cu²⁺ concentration in deposition solution and the contents of Ni and Cu in the Ni@NiCu-x catalysts.

Fig. S6 (a) XPS surveys, (b) spectrums of Ni 2p_{3/2}, and (c) Cu 2p_{3/2} of Ni and Ni@NiCu catalysts.

The effect of tensile lattice stain on the electronic structure of Ni surface is evaluated by X-ray photoelectron spectroscopy (XPS), shown in Fig. S6. The peaks near 853 eV and 858.5 eV are corresponded to the metallic Ni (Ni⁰) and its satellite peaks,¹ while the peaks near 856.5 eV and 862 eV are attributed to Ni^{2+} and its satellite peaks.² Moreover, the Cu⁰ and Cu²⁺ peaks in Ni@NiCu are located around 932.6 eV and 935.1 eV, respectively.

Fig. S7 CV curves on (a) Ni, (b) Ni@NiCu-0, (c) Ni@NiCu-5, (d) Ni@NiCu-10, (e) Ni@NiCu-20, (f) Ni@NiCu-30 catalysts in 1 mol L-1 NaOH solution at various scan rates, and (g) CV curve on Pt/C in 0.1 M HClO₄ at a scan rate of 50 mV s⁻¹. ECSA of Pt/C was calculated from a hydrogen adsorption peak from CV based on the equation: ECSA = Q_H / (210 µC cm⁻²), where Q_H is the charge of hydrogen electro-adsorption calculated from the shaded area.

Fig. S8 The *v* ~ Δ*j* relationship curves on different catalysts.

Fig. S9 The Tafel curves of BOR on Ni@NiCu-x, Ni, and commercial Pt/C catalysts in mixed a solution of 0.15 M NaBH⁴ and 2 M NaOH at 25 ℃.

Fig. S10 The EIS of BOR on Ni@NiCu-x, Ni, and commercial Pt/C catalysts in 0.15 M NaBH⁴ and 2 M NaOH mixed solution at 25 ℃. The inset is the equivalent circuit.

Fig. S11 The CV curves of BOR on (d) Ni and (e) Ni@NiCu-20 catalysts at different temperatures in a mixed solution of 0.15 M NaBH₄ and 2 M NaOH at a scan rate of 10 mV s⁻¹.

Fig. S12 The Tafel curves of HER on Ni@NiCu-x and Ni catalysts in 2 M NaOH solution at 25 ℃.

Fig. S13 SEM images of Ni@NiCu-20 after discharge.

Fig. S14 CV curves of BOR on (a) Ni, (b) Ni@NiCu-0, (c) Ni@NiCu-5, (d) Ni@NiCu-10, (e) Ni@NiCu-20, and (f) Ni@NiCu-30 catalyst electrodes at various rotate speeds; Koutecky-Levich plots of BOR on Ni@NiCu-x and Ni catalyst electrodes at (g) 0.10 V, (h) 0.20 V, and (i) 0.25 V *vs.* RHE.

Fig. S15 Surface structure of (a) Ni-0% and (b) Ni@NiCu-2%, the grey and orange denote Ni and Cu atoms, respectively.

Fig. S16 Reaction pathway of BOR on Ni@NiCu-2% and Ni-0% at 0 V *vs.* RHE.

Fig. S17 Optimized structures of corresponding reaction intermediates in BOR on the Ni@NiCu-2% surface, the Ni, B, O and H atoms are denoted by gray, blue, red, and white balls, respectively.

Fig. S18 Optimized structures of corresponding reaction intermediates in BOR on the Ni-0% surface, the Ni, B, O and H atoms are denoted by gray, blue, red, and white balls, respectively.

Fig. S19 Projected DOS of the Ni@NiCu-2%.

Fig. S20 Optimized structures of corresponding reaction intermediates in BOR on the Ni-0%, Ni@NiCu-0%-x, and Ni@NiCu-2% surface, the Ni, B, O and H atoms are denoted by gray, blue, red, and white balls, respectively.

Fig. S21 Energy barrier for the fourth decoupling of B-H bond on Ni-0%, Ni@NiCu-0%-x, and Ni@NiCu-2% at 0.3 V *vs.* RHE.

Fig. S22 Comparison of the density of state of 3d orbitals of Ni-0%, Ni@NiCu-0%-x, and Ni@NiCu-2%.

Fig. S23 Configuration schematic diagram of DBFC unit.

Fig. S25 Practical application of the DBFC with the Ni@NiCu anode.

Catalyst	lattice parameter (\AA)	$\varepsilon_{\text{micro}}\left(\frac{0}{0}\right)$	$SA-$ ^E micro (%)
Ni	3.522253	0.058321	0.00269
$Ni@NiCu-0$	3.523355	0.011008	0.0004
$Ni@NiCu-10$	3.524195	0.203011	0.016424
$Ni@NiCu-20$	3.524439	0.062177	0.005174
$Ni@NiCu-30$	3.5244392	0.021008	0.00062

Table S1 XRD refinement results of prepared catalysts.

Table S2 Summaries of electrocatalytic activities of prepared catalysts towards BOR.

Table S3 The catalytic activities to BOR (at \sim 0.3 V *vs.* RHE) achieved by some typical noblemetal-based and Ni-based catalysts developed in recent years.

Reference

- 1 A. Roustila, C. Severac, J. Chêne and A. Percheron-Guégan, *Surf Sci*, 1994, **311**, 33–44.
- 2 Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng and C. Zhang, *ACS Nano*, 2014, **8**, 8121– 8129.
- 3 S. Saha, P. Gayen, Z. Wang, R. J. Dixit, K. Sharma, S. Basu and V. K. Ramani, *ACS Catal*, 2021, **11**, 8417–8430.
- 4 Y. e. Duan, S. Li, Q. Tan, Y. Chen, K. Zou, X. Dai, M. Bayati, B. B. Xu, L. Dala and T. X. Liu, *Int J Hydrogen Energy*, 2021, **46**, 15471–15481.
- 5 G. Braesch, Z. Wang, S. Sankarasubramanian, A. G. Oshchepkov, A. Bonnefont, E. R. Savinova, V. Ramani and M. Chatenet, *J Mater Chem A Mater*, 2020, **8**, 20543–20552.
- 6 B. Hu, J. Yu, J. Meng, C. Xu, J. Cai, B. Zhang, Y. Liu, D. Yu, X. Zhou and C. Chen, *ACS Appl Mater Interfaces*, 2022, **14**, 3910–3918.
- 7 B. Hu, P. Chen, C. Xu, J. Meng, J. Cai, Y. Yang, B. Zhang, D. Yu, X. Zhou and C. Chen, *Appl Catal B*, 2022, **307**, 121183.
- 8 L. Yi, B. Yu, W. Yi, Y. Zhou, R. Ding and X. Wang, *ACS Sustain Chem Eng*, 2018, **6**, 8142–8149.
- 9 C. Song, G. Wang, B. Li, C. Miao, K. Ma, K. Zhu, K. Cheng, K. Ye, J. Yan, D. Cao and J. Yin, *Electrochim Acta*, 2019, **299**, 395–404.