Cationic metal-organic framework with charge separation effect as a high output triboelectric nanogenerator material for self-powered anticorrosion

Zhichao Shao,*^a Haoran Cheng,^a Yi Wei,^b Junshuai Chen,^a Kexin Gao,^a Zhe Fang,^a Yangshuang Yan,^a Liwei Mi*^a and Hongwei Hou*^b

^[a] Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China.

^[b] College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.

E-mail address: shaozhichao@zut.edu.cn, <u>mlwzzu@163.com</u>,

houhongw@zzu.edu.cn

Supporting Information

Fig. S1 Chemical structure of ZUT-iMOF-1(Cu). Fig. S2 UV absorption spectra of ZUT-iMOF-1(Cu). Fig. S3 XPS spectra of ZUT-iMOF-1(Cu). Fig. S4 PXRD spectra of ZUT-iMOF-1(Cu). Fig. S5 IR spectra of ZUT-iMOF-1(Cu). Fig. S6 Water contact angle of ZUT-iMOF-1(Cu). Fig. S7 Zeta potential of ZUT-iMOF-1(Cu). Fig. S8 N₂ adsorption and desorption isotherms of ZUT-iMOF-1(Cu). Fig. S9 I_{SC} of iMOF-TENG at 1 Hz. Fig. S10 I_{SC} of iMOF-TENG at 2 Hz. Fig. S11 /_{SC} of iMOF-TENG at 4 Hz. Fig. S12 I_{SC} of iMOF-TENG at 5 Hz. Fig. S13 I_{SC} of iMOF-TENG at 6 Hz. Fig. S14 /_{SC} of iMOF-TENG at 8 Hz. **Fig. S15** V_0 of iMOF-TENG from 1 Hz to 8 Hz. **Fig. S16** V_0 of iMOF-TENG at 1 Hz. **Fig. S17** V_0 of iMOF-TENG at 2 Hz. **Fig. S18** V_0 of iMOF-TENG at 4 Hz. **Fig. S19** V_0 of iMOF-TENG at 5 Hz. **Fig. S20** V_0 of iMOF-TENG at 6 Hz. **Fig. S21** V_0 of iMOF-TENG at 8 Hz. Fig. S22 SEM images of ZUT-iMOF-1(Cu) on the Cu layer (a) before and (b) after Fig. S23 SEM-EDS mapping analysis image of ZUT-iMOF-1(Cu) before testing. Fig. S24 SEM-EDS mapping analysis image of ZUT-iMOF-1(Cu) after testing. **Fig. S25** PXRD spectra of ZUT-iMOF-1(Cu) before and after testing. Fig. S26 Tauc plots of ZUT-iMOF-1(Cu). Fig. S27 Mott-Schottky plots of ZUT-iMOF-1(Cu). Fig. S28 Working mechanism of TENG based on iMOF-TENG. Fig. S29 Commercial LED lights lited by iMOF-TENG. Table S1 Crystallographic data and structure refinement details for ZUT-iMOF-1(Cu). Table S2 Selected bond lengths (Å) and bond angles (deg) for ZUT-iMOF-1(Cu). crystal structure description. Table S3 Electrochemical parameters of carbon steel obtained from polarization curves with and without TENG. Table S4 Resistance fitting parameters of carbon steel with and without TENG. Table S5 Output performance comparison of different materials-based TENGs

Fig. S1 Chemical structure of ZUT-iMOF-1(Cu).

Fig. S2 UV absorption spectra of ZUT-iMOF-1(Cu).

Fig. S4 PXRD spectra of ZUT-iMOF-1(Cu).

Fig. S5 IR spectra of ZUT-iMOF-1(Cu).

Fig. S6 Water contact angle of ZUT-iMOF-1(Cu).

Fig. S7 Zeta potential of ZUT-iMOF-1(Cu).

Fig. S8 N_2 adsorption and desorption isotherms of ZUT-iMOF-1(Cu).

Fig. S9 I_{SC} of iMOF-TENG at 1 Hz.

Fig. S12 *I*_{SC} of iMOF-TENG at 5 Hz.

Fig. S15 V_0 of iMOF-TENG from 1 Hz to 8 Hz.

Fig. S16 V_0 of iMOF-TENG at 1 Hz.

Fig. S17 V_0 of iMOF-TENG at 2 Hz.

Fig. S18 V_0 of iMOF-TENG at 4 Hz.

Fig. S19 V_0 of iMOF-TENG at 5 Hz.

Fig. S21 V_0 of iMOF-TENG at 8 Hz.

Fig. S22 SEM images of ZUT-iMOF-1(Cu) on the Cu layer (a) before and (b) after testing.

Fig. S23 SEM-EDS mapping analysis image of ground powder of ZUT-iMOF-1(Cu) before testing.

Fig. S24 SEM-EDS mapping analysis image of ground powder of ZUT-iMOF-1(Cu) after testing.

Fig. S25 PXRD spectra of ZUT-iMOF-1(Cu) before and after testing.

Fig. S26 Working mechanism of TENG based on iMOF-TENG.

Fig. S28 Mott-Schottky plots of ZUT-iMOF-1(Cu).

Fig. S29 Commercial LED lights lited by iMOF-TENG.

Compound	ZUT-iMOF-1(Cu)	
Formula	C ₂₁ H ₁₈ CuN ₆ O _{8.5}	
Mr	553.95	
Т/К	273.15	
l (Mo–Ka)/Å	0.71073	
Crystsyst	monoclinic	
Space group	P2 ₁ /n	
a/Å	10.3397(6)	
b/Å	14.6943(8)	
c/Å	14.9974(8)	
α/°	90	
β/°	90.685(2)	
γ/°	90	
Volume/ų	2278.5(2)	
Z	4	
ρ _{calc} (g cm ⁻³)	1.615	
F(000)	1132.0	
μ(mm⁻¹)	1.023	
$R_1 (I >= 2\sigma(I))$	0.0375	
$wR_2 (I > 2\sigma(I))$	0.1070	
$R = \left[\sum F_0 - F_0 / \sum F_0 \right], R_W = \sum_W \left[F_0^2 - Fc^2 ^2 / \sum_W (F_w ^2)^2\right]^{1/2}$		

 Table S1 Crystallographic data and structure refinement details for ZUT-iMOF-1(Cu).

ZUT-iMOF-1(Cu)			
Cu01-O002	1.9801(17)	C00C-C00I	1.379(3)
Cu01-0003	2.0007(18)	C00C-C00N	1.521(3)
Cu01-O0041	2.2238(18)	COOE-COOF	1.508(3)
Cu01-N0082	2.014(2)	COOF-COOH	1.374(3)
Cu01-N009	2.013(2)	C00F-C00I	1.387(3)
O002-C00E	1.268(3)	COOG-COOP	1.512(4)
O004-C00N	1.248(3)	C00G-C00Q	1.389(4)
O003-Cu01-O002	90.51(7)	C00I-C00F-C00E	119.4(2)
O0041-Cu01-O002	99.34(7)	C00I-C00F-C00H	119.0(2)
O0041-Cu01-O003	91.67(7)	C00Q-C00G-C00P	119.7(3)
N0082-Cu01-O002	163.17(8)	C00R-C00G-C00P	121.4(2)
N0082-Cu01-O003	86.37(8)	C00R-C00G-C00Q	118.8(2)
N0082-Cu01-O0041	97.28(8)	C00F-C00H-N006	120.4(2)
N009-Cu01-O002	92.33(8)	C00F-C00I-C00C	120.0(2)
N009-Cu01-O003	172.38(8)	C000-C00J-N008	123.0(3)
N009-Cu01-O0041	94.83(8)	C00T-C00K-N00A	116.2(3)
N009-Cu01-N0082	88.87(9)	C00U-C00K-N00A	124.7(3)
¹ -1/2+X,3/2-Y,-1/2+Z; ² 1/2+X,1/2-Y,-1/2+Z; ³ 1/2+X,3/2-Y,1/2+Z; ⁴ -			

Table S2 Selected bond lengths (Å) and bond angles (deg) for ZUT-iMOF-1(Cu). crystal structure description.

Symmetry codes:

1/2+X,1/2-Y,1/2+Z; ⁵-X,2-Y,1-Z

Table S3 Electrochemical parameters of carbon steel obtained from polarization curves with andwithout TENG.

	E _{corr}	/ _{corr}	-β _c	eta_{a}
	(V (<i>vs</i> . SCE))	(μA)	(mV dec⁻¹)	(mV dec⁻¹)
With TENG	-0.755	80.39	188.53	201.04
Without TENG	-0.646	58.28	196.15	198.09

 Table S4 Resistance fitting parameters of carbon steel with and without TENG.

R (O)		Q		
	Ν ₅ (32)	Y(s sec^n×10 ⁻⁵)	n	K _{ct} (K12)
With TENG	554.8	1.608	0.965	18.519
Without TENG	562.2	1.7549	0.911	20.483

 Table S5 Output performance comparison of different materials-based TENGs.

Positive materials	Negative materials	Current(I _{sc})	Voltage(V ₀)	Ref.
TFP-DP-COF	PVDF	47.9µA	815V	5
Cd-MOF	PVDF	55.32 μA	451.8 V	6
ZIF-62	Teflon/Kapton/Et hyl cellulose	1.4 μA	62 V	46
ZUT-8	PVDF	76.81 μA	562.78 V	24
ZIF-8	Kapton	7 μΑ	164 V	34
Uio-66	Acrylic Cubstrate	0.3 μΑ	17.5 V	32
Uio-66-4F	Al	30.6 µA	937.4 V	35
Cu-coated-CFP	PVDF-coated-CFP	7.5 μΑ	180 V	47
ZnAl	PVDF	5.6 μΑ	230.6V	48
TPB-DBBA-COF	PVDF	43.6µA	416V	49
ZUT-iMOF-1(Cu)	PVDF	73.79 μA	491.45 V	This work