Supplementary information for:

Preparation of novel Bi₉O_{7.5}S₆/SnS composite film with improved

photoelectric properties

Tianhong Luo,^a Jing Wang,^a Zhanqiang Liu,^b Shu Chen,^a Jingshan Hou,^a Yongzheng Fang,^{*,a} Yanwei Huang^{*,a} and Ganghua Zhang^{*,a}

^aSchool of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China;

^bDepartment of Materials Chemistry, Huzhou University, 759 East Erhuan Road, Huzhou, 313000, P. R. China.

E-mail addresses: fyz1003@sina.com (Y.Z. Fang), ywhuang@sit.edu.cn (Y.W. Huang) and ganghuazhang@sit.edu.cn (G.H. Zhang)

Figure S1. EDS mapping images of SnS (a-d) and $Bi_9O_{7.5}S_6$ (e-h) microcrystals. EDS result of SnS (i) and $Bi_9O_{7.5}S_6$ (j) microcrystals.

Figure S2. EDS mapping images (a-f) and corresponding EDS results (g) of the $Bi_9O_{7.5}S_6/SnS/ITO$ composite sample.

Figure S3. The optical photographs of $Bi_9O_{7.5}S_6$, SnS, and $Bi_9O_{7.5}S_6$ /SnS films.

Figure S4. The physical appearance of the device.

Figure S5. Response times of $Bi_9O_{7.5}S_6$ (a) and SnS (b) films at 1 V bias voltage.

Name of the sample	Photoresponsivity	Response time	Optical bandgap	Ref.
	(mA/W)	(s)	(eV)	
Bi ₉ O _{7.5} S ₆ /SnS	40.1	0.49/0.74	1.2	This work
SnS/Si	86.2	0.15	1.0	29
SnS/WS ₂	719	5	-	30
SnS_2/SnS	35	0.9	-	31
SnS/CdS	10.4	1	1.1-2.4	32

 Table S1. Comparison table of photodetection devices output performance.

Figure S6. Cross-sectional optical micrographs of $Bi_9O_{7.5}S_6/SnS/ITO$ composite films with different thicknesses.

Figure S7. (a) *J-t* curves of $Bi_9O_{7.5}S_6/SnS/ITO$ devices with different ratios of $Bi_9O_{7.5}S_6/SnS$. (b) Corresponding photocurrent for different ratios of $Bi_9O_{7.5}S_6/SnS$.

Figure S8. (a) The photocurrent curves of $Bi_9O_{7.5}S_6/SnS/ITO$ film at different bias voltages. (b) Corresponding photocurrent density at different bias voltages.

Figure S9. (a) *J-t* curves of $Bi_9O_{7.5}S_6/SnS$ composite film versus the applied light intensity. (b) Photocurrent and dark current densities at different light intensities.

Figure S10. The XRD patterns of $Bi_9O_{7.5}S_6/SnS$ composite films before and afterexposinginairandgloveboxfor2weeks.

Figure S11. XPS spectra of $Bi_9O_{7.5}S_6$, SnS and $Bi_9O_{7.5}S_6/SnS$: (a) Bi 4*f*, (b) Sn 3*d*, (c) O 1*s* and (d) S 2*p* spectra.