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Experimental: Synthesis of ligand precursors and previously reported ligands, L'H, L°H, L'1°H
and L'H

Synthesis of 2-bromo-1-(thiophen-2-yl)ethan-1-one

A simple bromination reaction took place, where dioxane dibromide (1.10 g, 8.05mmol) in a
solution of 1,4-dioxane and diethyl ether (1:1, 40 mL) was added dropwise to 2-acetyl
thiophene (0.92 g, 7.31 mmol) in the same solvent mixture over 2 h whilst stirring under air
at room temperature. The solution was added to water and extracted with diethyl ether. The
combined organic layers were dried over MgS0s4, and the solvent was removed in vacuo to
yield a brown/yellow oil (1.49 g, 99%). 'H NMR (400 MHz, CDCl3) &x = 7.80 (dd, 3Jun = 3.8, *Jun
= 1.1 Hz, 1H), 7.71 (dd, 3Jun = 5.0, “Jun = 1.1 Hz, 1H), 7.16 (dd, 3Jun = 4.9, 3.9 Hz, 1H), 4.36 (s,

2H) ppm. The data is consistent with literature values.?

Synthesis of 2-bromo-1-(5-bromothiophen-2-yl)ethan-1-one

Prepared similarly from 2-acetyl-5-bromothiophene (1.08 g, 5.28 mmol) and dioxane
dibromide (1.43 g, 5.81 mmol) to give the product as an off white solid (1.39 g, 93%). 'H NMR
(400 MHz, CDCls) 84 = 7.55 (d, 3Jun = 4.1 Hz, 1H), 7.14 (d, 3Jun = 4.1 Hz, 1H), 4.28 (s, 2H) ppm.

Synthesis of 2-bromo-1-(5-chlorothiophen-2-yl)ethan-1-one

Prepared similarly from 2-acetyl-5-chlorothiophene (1.01 g, 6.26 mmol) and dioxane
dibromide (1.71 g, 6.89 mmol) to give the product as an off white solid (1.06 g, 71%). *H NMR
(400 MHz, CDCls): 6y = 7.60 (d, 3/un = 4.1 Hz, 1H), 7.00 (d, 3Jun = 4.1 Hz, 1H), 4.28 (s, 2H) ppm.

Synthesis of 2-bromo-1-(5-iodothiophen-2-yl)ethan-1-one

A modified bromination method was adopted, where 2-acetyl-5-iodothiophene (1.00 g, 3.97
mmol) was dissolved in glacial acetic acid (15 mL) and dioxane dibromide (0.984 g, 3.97
mmol) in acetic acid (6 mL) was added dropwise. The mixture was stirred at room

temperature under an inert nitrogen atmosphere in the absence of light for 24 h. The solvent



was removed in vacuo, ensuring that the temperature remained under 40°C. The residue
was dissolved in dichloromethane and washed with saturated aqueous NaHCO3s, water and
saturated aqueous NaCl. The combined organic layers were dried over MgSQa, then the
solvent was removed in vacuo to give the product as a brown solid (1.23 g, 93 %). 'H NMR
(500 MHz, CDCls): &4 = 7.42 (d, 3Jun = 4.0 Hz, 1H), 7.34 (d, 3Jun = 4.0 Hz, 1H), 4.28 (s, 2H) ppm.
13C{'H} NMR (126 MHz, CDCl3) ¢ = 183.1, 146.6, 138.5, 134.4, 87.4, 30.2 ppm. HRMS (El):
found m/z329.8209, calc’d m/z329.8211 for CgH40OSBr*?’I. FTIR (solid, ATR) Vmax/ cm™: 3084,
3073, 2996, 2949, 1663, 1638, 1510, 1396, 1389, 1312, 1271, 1215, 1192, 1146, 1067, 1034,
1015, 959, 924, 903, 870, 795, 762, 739, 679, 662, 638, 603, 596, 573, 540, 474, 444, 415.

Synthesis of 1-([2,2’-bithiophen]-5-yl)-2-bromoethan-1-one

Prepared similarly to 2-bromo-1-(thiophen-2-yl)ethan-1-one from 5-acetyl-2,2’-bithienyl
(122 mg, 0.585 mmol) and dioxane dibromide (174 mg, 0.702 mmol) to give the crude
product. The pure product was obtained by column chromatography (SiO2) where the band
eluted at 99:1 CH,Cl,:CH30H to give the product as a dark yellow solid (118 mg, 70%). H
NMR (400 MHz, CDCl3) &4 = 7.70 (d, 3Jun = 4.0 Hz, 1H), 7.37 — 7.34 (m, 2H), 7.20 (d, 3/un = 4.0
Hz, 1H), 7.07 (dd, 3Juu = 5.0, 3.7 Hz, 1H), 4.34 (s, 2H) ppm. 3C{*H} NMR (101 MHz, CDCl3) &¢
=184.2, 147.5, 138.6, 136.1, 134.6, 128.5, 127.2, 126.3, 124.5, 30.2 ppm. HRMS (Cl): found
m/z 285.9115, calc’d m/z 285.91162 for C10H707°Br32S,. FTIR (solid, ATR) Vmax / cm™: 3084,
3034, 2922, 2853, 1665, 1639, 1504, 1443, 1422, 1358, 1310, 1273, 1204, 1192, 1159, 1115,
1065, 1051, 1034, 972, 934, 887, 839, 799, 750, 741, 702, 640, 610, 592, 542, 488, 446.

Synthesis of 2-bromo-1-(thiophen-3-yl)ethan-1-one?

The brominated compound was prepared via a modified synthetic method. 3-
Acetylthiophene (804 mg, 6.372 mmol) in a solution of 1,4-dioxane and diethyl ether (1:1,
40 mL) was heated to 70°C under an inert nitrogen atmosphere whilst stirring. Dioxane
dibromide (1.730 g, 7.010 mmol) in the same solvent mixture (40 mL) was added dropwise
over 2 h. The reaction mixture was heated to reflux for a further 24 h. The mixture was
monitored by thin-layer chromatography (DCM, SiO3). Upon cooling to room temperature,
the mixture was washed with distilled water (30 mL) and extracted with diethyl ether (3 x

25 mL). The combined organic layers were dried over MgS0O4 and the solvent was removed



in vacuo giving rise to the crude product. Purification took place by column chromatography
(DCM > DCM:MeOH, 9:1) where the pure product was obtained as an off-white crystalline
solid (752 mg, 58%). 'H NMR (400 MHz, CDClz) 6x = 8.18 (dd, *Jun = 2.9, 1.3 Hz, 1H), 7.58 (dd,
3Jun == 5.1, “un = 1.3 Hz, 1H), 7.36 (dd, 3Jun = 5.1, YJun = 2.9 Hz, 1H), 4.34 (s, 2H) ppm. 3C{*H}
NMR (101 MHz, CDCls) 8¢ = 185.7, 138.9, 133.9, 127.4, 127.0, 31.7 ppm.

Synthesis of 2-(thiophen-2-yl)quinoxaline (L'H)3

2-bromo-1-(thiophen-2-yl)ethan-1-one (1.49 g, 7.26 mmol) and 1,2-phenylenediamine (0.86
g, 7.99 mmol) were heated to reflux in ethanol (10mL) for 24 h under an inert nitrogen
atmosphere. The formation of a precipitate took place upon cooling the mixture to room
temperature, and the resultant suspension was filtered under reduced pressure. This was
washed with a small amount of cold ethanol to give the product as an orange solid (0.33 g,
22%). 'H NMR (400 MHz, CDCl3) &4 = 9.24 (s, 1H), 8.09 — 8.04 (m, 2H), 7.86 (dd, 3/un = 3.7,
“Jun = 1.1 Hz, 1H), 7.77 = 7.67 (m, 2H), 7.55 (dd, 3Jun = 5.0, *Juu = 1.1 Hz, 1H), 7.21 (dd, 3Jun =
5.0, 3.7 Hz, 1H) ppm. 3C{*H} NMR (101 MHz, CDCl3) 8¢ = 147.5, 142.4, 142.3, 142.2, 141.5,
130.6, 130.0, 129.4, 129.3, 129.3, 128.6, 127.1 ppm. HRMS (El): found m/z 212.0411, calc’d
m/z 212.0408 for C12HgN,S. UV-vis (MeCN) Amax (€ x 10* / L mol* cm™): 217 (3.2), 272 (2.1),
353 (1.6), 368 (1.5) nm. FTIR (solid, ATR) Vmax / cm™: 3121, 3059, 2363, 2330, 1734, 1545,
1491, 1427, 1319, 1238, 1207, 1134, 1125, 1074, 1053, 997, 941, 926, 866, 851, 758, 721,
677,613,583,567,542,471, 419, 407.

Synthesis of 6,7-dimethyl-2-(thiophen-2-yl)quinoxaline (L°H)*

Prepared similarly from 2-bromo-1-(thiophen-2-yl)ethan-1-one (500 mg, 2.44 mmol) and
4,5-dimethyl-o-phenylenediamine (365 mg, 2.68 mmol) to give the product as a yellow solid
(270 mg, 46%). *H NMR (400 MHz, CDCl3) 6y = 9.14 (s, 1H), 7.83 (s, 1H), 7.81 (dd, 3Jun = 3.7,
4Jun = 1.0 Hz, 1H), 7.79 (s, 1H), 7.51 (dd, 3Jun = 5.0, “Jun = 1.0 Hz, 1H), 7.19 (dd, 3Jun = 5.0, 3.7
Hz, 1H), 2.48 (s, 6H) ppm. 3C{*H} NMR (101 MHz, CDCl5) 6¢c = 146.7, 142.8, 141.2, 141.1,
141.2, 140.4, 139.9, 129.3, 128.5, 128.3, 126.4, 20.5, 20.4 ppm. UV-vis (CH3CN): Amax (€ %
10* / L molt cm™): 222 (3.5), 273 (2.4), 357 (2.1), 373 (2.1) nm. FTIR (solid, ATR) Vmax / cm™t:
3069, 3034, 1541, 1487, 1422, 1317, 1213, 1082, 1067, 1024, 1005, 930, 872, 847, 704, 638,
621,494, 428.



Synthesis of 2,3-di(thiophen-2-yl)quinoxaline (L1°H)>

2,2’-thenil (100 mg, 0.450 mmol) and 1,2-phenylenediamine (54 mg, 0.495 mmol) were
dissolved in ethanol (15 mL). A catalytic amount of acetic acid (0.5 mL) was added and the
reaction mixture was heated to reflux and stirred for 24 h under an inert nitrogen
atmosphere. Upon cooling to room temperature, the solvent was removed in vacuo, and the
crude product was dissolved in dichloromethane and washed with 0.1M HCI (2 x 10 mL). The
organic layer was dried over MgS04 and the solvent was removed in vacuo to give the
product as a pale yellow crystalline solid (125 mg, 95 %). *H NMR (400 MHz, CDCls) &4 = 8.08
(dd, 3Jun = 6.3, Yun = 3.5 Hz, 1H), 7.72 (dd, 3Jun = 6.4, *Juyy = 3.4 Hz, 1H), 7.50 (dd, 3Jun = 5.0,
4Jyy = 0.8 Hz, 1H), 7.26 (d, 3Juw = 3.7 Hz, 1H), 7.05 (dd, 3/uu = 4.8, 3.9 Hz, 1H) ppm. UV-vis
(MeCN) Amax (€ x 10* / L mol'* cm): 208 (2.3), 252 (1.8), 286 (1.4), 378 (1.0) nm.

Synthesis of 2-(thiophen-3-yl)quinoxaline (L11H)®

The ligand was prepared similarly to L'H with slight modifications, where 2-bromo-1-
(thiophen-3-yl)ethan-1-one (728 mg, 3.55 mmol) and 1,2-phenylenediamine (406 mg, 3.76
mmol) were dissolved in ethanol (40 mL) and heated to reflux under an inert nitrogen
atmosphere for 24 h. The mixture was cooled to room temperature and the crude product
was extracted with CH2Cl; (3 x 20 mL) and washed with distilled water (30 mL). The combined
organic layers were dried over MgSQO4 and the solvent was removed in vacuo. Purification
took place using column chromatography (CH,Cl, — CH,Cl:CH3OH 9:1, SiO;) to obtain the
pure product as a dark brown solid (619 mg, 82%). *H NMR (400 MHz, CDCl3) 61 9.24 (s, 1H),
8.16 (dd, “Juy = 2.9, 1.3 Hz, 1H), 8.09 (ddd, 3/uH = 5.8, 5.4, “Juy = 1.6 Hz, 2H), 7.92 (dd, 3Juu =
5.1, “Jun = 1.3 Hz, 1H), 7.69-7.80 (m, 2H), 7.50 (dd, 3Jun = 5.1, “Jun = 2.9 Hz, 1H) ppm. B3C{ H}
NMR (126 MHz, CDCls) 6¢c = 148.0, 143.3, 142.3, 141.3, 139.5, 130.4, 129.4, 129.3, 129.1,
127.2,126.5, 126.0 ppm. UV-vis (MeCN) Amax (€ x 10%/ L mol't cm™): 213 (2.4), 237 (1.4), 267
(2.4), 339 (1.2), 351 (1.0) nm.
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Figure S1. Stacked 'H NMR spectra of L'*H, (400 MHz, CDCls).
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Figure S2. Comparison "*C{'H} NMR spectra of LH (top) and [Ir(L7)2(bipy)]PFs (101 MHz,
CDCls).

Table S1. Selected peak positions and coupling constants from the "*C{'"H} NMR spectra
of L’H and [Ir(L7)2(bipy)]PFe.

Assignment
N F
DO
s N F
\
N F
LT
N F
\ |
N\ F
PO
s N7 F
\ |

L7H (CDCls, 101 MHz)

152.9
1Jce = 256.6 Hz, 2Jcr = 16.1 Hz
151.9
1Jce = 256.0 Hz, 2Jcr = 16.0 Hz
139.7
8Jer =111 Hz, “Jocr = 1.2 Hz
138.6
3Jce =10.6 Hz, *Jcr = 1.1 Hz
115.1
2Jce=17.5Hz, 8JcFr = 1.9 Hz
114.9

2Jcr =17.5 Hz, 3Jcr = 1.6 Hz

Oc/ ppm

[Ir(L7)2(bipy)]PFs (CDsCN, 126 MHz)

153.7
'Jer = 255.0 Hz, 2Jcr = 15.4 Hz

151.3
'Jor = 253.4 Hz, 2Jor = 15.4 Hz

140.5
2Jcr =10.4 Hz, 3Jcr = 1.2 Hz

138.8
2Jcr = 10.5 Hz, 3Jcr = 1.4 Hz

118.0
2Jcr = 17.9 Hz, 3Jcr = 2.1 Hz
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Figure S15. '"H NMR spectrum of L’H (CDCls).
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Figure S17. "F{"H} NMR spectrum of L’H (CDCl5).
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Figure S38. HRMS data for the chlorinated compounds (El for L?H, ESI for L®H and
[Ir(L®)2(bipy)]PFs) where corresponding structures are placed above. Inset:® magnified

portion of the [Ir(L8)2(bipy)]PFs spectrum showing the isotopic distribution.
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Table S2. Data collection parameters for the X-ray diffraction crystal structures.

[Ir(L6)z(bipy)]PFe  [[Ir(L8)z(bipy)]PFs
Formula C3sH30F6IrNePS2 (C35.33H20Cl4FsIrNs.67PS2
Dcale./ g cm3 1.794 1.928
i/ mm-? 3.940 3.767
Formula Weight 972.014 1081.01
Colour red red
Shape block-shaped rod-shaped
Size/mm3 0.100x0.080x0.040 [0.152x0.045x0.014
T/K 100(2) 100.15
Crystal System triclinic triclinic
Space Group P-1 P-1
a/A 11.7348(5) 14.0214(4)
b/A 12.2893(4) 20.3990(8)
c/A 13.6241(4) 20.6263(4)
af 84.601(3) 74.988(2)
B/° 75.930(3) 78.654(2)
v/ 70.807(3) 87.905(3)
V/A3 1799.67(12) 5586.2(3)
A 2 6
A 1 3
Wavelength/A 0.71075 0.6889
Radiation type Mo K. Synchrotron
Onmin/* 2.13 1.587
Omax/* 28.70 26.573
Measured Refl's. 41819 175892
Indep't Refl's 9285 25612
Refl's [>2 o(1) 5963 11600
Rint 0.0810 0.1388
Parameters 828 1911
Restraints 2473 5870
Largest Peak 1.1841 4.703
Deepest Hole -0.9983 -1.953
GooF 1.0674 1.250
WR: (all data) 0.1020 0.4106
WR: 0.0870 0.3724
R: (all data) 0.0913 0.1969
R1 0.0430 0.1339
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Detailed comment regarding structure of [Ir(L8)2(bipy)]PFe:

For [Ir(L8)2(bipy)]PFs, multiple crystals were attempted. The dataset used was from data
collected using synchrotron radiation. There were compromises between having a large
enough crystal to obtain suitable diffraction images, radiation damage to the crystal during
the data collection, and having sufficient resolution to be able to determine the structure.
The crystal used for data collection was not single, but most probably some sort of stacked
plate with the distortion mainly about one axis. However, it did yield mostly clean diffraction
spots and gave the best data from all those attempted. The data was integrated as a single
component as all attempts to integrate using multiple components produced poorer results.
As crystal damage was observed during the collection, attempts to compensate for this
during the integration (using B-factors) were employed. A basic model was used which did
improve the data quality, however it is likely that the model is an oversimplification resulting
in some minor errors in the given hkl intensities. This, along with the crystal not been totally
single, could explain the broadening of the Fops versus Fcaic graph (Figure S39). Attempts to
investigate this to improve the data quality all gave worse results such that the basic settings

were used in an effort to yield the basic overall structure.

F obs

700

[  Filtered Data
] Omitted (cut) Data

Omitted (hkl) Data

F calc

0 100 200 300 400 500 600 700 800

Figure $39. The Fops versus Fcarc plot for the data associated with [Ir(L8)2(bipy)]PFe.
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Figure S40. ORTEP representations of the structures of [Ir(L®)2(bipy)|PFes (left) and

[Ir(L8)2(bipy)]PFs (right) obtained from single crystal X-ray diffraction.
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Figure S41. Room temperature (MeCN) UV-vis absorption spectra of L'H and
[Ir(L")2(bipy)PFe.
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Figure S42. Room temperature (MeCN) UV-vis absorption spectra of L°H and
[Ir(L®)2(bipy)PFe.

4.0
5 3.0 1
o
=
=
Q
< 2.0+
S LoH
S~ 6 i
® [Ir(L°),(bipy)]PFg
1.0 1
0.0 p T T T . T E T
200 300 400 500 600

Wavelength / nm

Figure S43. Room temperature (MeCN) UV-vis absorption spectra of L®H and
[Ir(L®)2(bipy)PFe.
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Figure S44. Room temperature (MeCN) UV-vis absorption spectra of L’H and
[Ir(L")2(bipy)PFe.
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Figure S45. Room temperature (MeCN) UV-vis absorption spectra of L®H and
[Ir(L8)2(bipy)PFe.
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Figure S46. Room temperature (MeCN) UV-vis absorption spectra of L'H and
[Ir(L"%)2(bipy)PFe.
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Figure S47. Room temperature (MeCN) UV-vis absorption spectra of L'H and
[Ir(L"")2(bipy)PFe.
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Figure S48. Examples of the fitted decay profiles (with residual errors shown beneath each

Errors
Errors

decay) for [Ir(L®)2(bipy)PFe under aerated (left) and deoxygenated (right) conditions (MeCN,
hex = 295 nm).
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Figure S49. Comparison of the low temperature (77K, EtOH/MeOH glass) emission spectra

for the complexes.
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