Enhancing stability via confining Rh-P species in ZIF-8 for

hydroformylation of 1-octene

Xiaorui Yan[†], Lele Chen[†], Haisheng Wei^{*}, Tiantian Liu, Kairui Li, Jing Li^{*}

College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China

Figure S1. XRD characterizations of the samples with different content of PPh₃ ligand.

Figure S2. FT-IR patterns for different content of phosphine ligand in PPh₃(x)@ZIF-8 samples

Figure S3. TG curves of different $PPh_3(x)@ZIF-8$ samples, pure ZIF-8 and PPh_3 ligand.

Figure S4. SEM images (a,b) and EDS mapping of PPh₃(3.0)@ZIF-8 sample (c).

Figure S5. Nitrogen physisorption analysis of PPh₃(3.0)@ZIF-8 and pure ZIF-8 samples.

Figure S6. FT-IR results of Rh-PPh₃ samples by different reduction procedure.

Figure S7. HRTEM (a,b,c) and EDS mapping (d) analyses of Rh-P-NaBH₄ catalyst. The inner picture is the size distribution of Rh particles.

Figure S8. H₂-TPR results of Rh@ZIF-8 and Rh-PPh₃ catalysts.

Figure S9 FT-IR analysis of 1-octene adsorption on different catalysts (a) and enlargement of the shadow part (b).

Figure S10 TPD analysis of n-nonaldehyde desorption on different catalysts. The desorption temperature at around 600 °C is due to the decomposition of support, which is confirmed by the TPD results of Rh-PPh₃ catalyst without addition of n-nonaldehyde.

Figure S11. XRD results of Rh-P-NaBH₄ (a) and Rh-P-R300 (b) catalysts before and after reaction.

Figure S12. HRTEM (a-d) and EDS mapping (e) analyses of Rh-P-NaBH₄ catalyst after reaction.

Figure S13. HRTEM images of Rh-P-R300 catalyst after reaction.

Sample	BET surface area (m ² /g)	Micropore volume (cm ³ /g)	Pore diameter (nm)
ZIF-8	1644.0	0.64	2.5
PPh ₃ (3.0)@ZIF-8	1304.0	0.63	8.7
Rh-PPh ₃	1206.0	0.62	9.9
Rh-P-NaBH ₄	1188.4	0.69	5.9
Rh-P-R300	905.1	0.47	8.5

Table S1. Nitrogen physisorption analysis for different samples.

		Sel	Yield ^a	L/B ^b	
Catalyst	Conv. (%)	Aldehydes	Iso-olefins	(%)	ratio
RhCl(PPh ₃) ₃	78.3	70.2	29.8	55.0	1.7
Rh-P-R300	99.0	56.5	43.5	56.0	0.7

Table S2 Catalytic result with Wilkinson catalyst in the hydroformylation of 1-octene.

Reaction condition: 1-octene/Rh=130, 1.25 mmol 1-octene, 0.5 mmol 1-hexanol as internal standard, 5 mL toluene, 90 °C, 2 MPa, 2 h. a: refer to the yield of aldehyde. b: L/B ratio refer to the ratio of linear to branched aldehyde in the products.

PPh ₃ content		Sel	Yield ^a	L/B ^b	
(g)	Conv. (%)	Aldehydes	Iso-olefins	(%)	ratio
1.0	99.1	29.4	70.6	29.1	0.9
2.0	99.5	35.8	64.2	35.6	0.9
3.0	99.0	56.5	43.5	56.0	0.7
5.0	99.3	53.7	46.3	53.3	0.8

Table S3 The catalytic results of P-Rh-R300 catalysts with different PPh3 content

Reaction condition: 1-octene/Rh=130, 1.25 mmol 1-octene, 0.5 mmol 1-hexanol as internal standard, 5 mL toluene, 90 °C, 2 MPa, 2 h. a: refer to the yield of aldehyde. b: L/B ratio refer to the ratio of linear to branched aldehyde in the products.

mole ratio of	C (0(1)	Sel. (%)		Yield ^a	L/B ^b	
PPh ₃ ligand	P/Rh	Conv. (%) –	Aldehydes	Iso-olefins	(%)	ratio
no	-	73.9	27.9	72.1	20.6	0.6
0.005g	19	87.8	75.6	24.4	66.4	1.7
0.01g	38	97.1	93.8	6.2	91.1	2.7

Table S4 The effect of the value of P/Rh in the homogeneous hydroformylation.

Reaction condition: 0.1 mg Rh, 1.25 mmol 1-octene, 0.5 mmol 1-hexanol as internal standard, 5 mL toluene, 90 °C, 2 MPa, 2 h. a: refer to the yield of aldehyde. b: L/B ratio refer to the ratio of linear to branched aldehyde in the products.

Rh conter	nt / wt%	the leaching of	
fresh	used	metal Rh /wt%	
1.02	0.82	19.6	
1.08	1.06	1.8	
	Rh conter fresh 1.02 1.08	Rh content / wt% fresh used 1.02 0.82 1.08 1.06	

Table S5 The ICP results of Rh-P-NaBH $_4$ and Rh-P-R300 catalysts used for five cycles.