Electronic Supporting Information

Solvatochromic behaviour of dithioether-functionalized triphenylamine ligands and their mechano-responsive $\mathbf{C u}(\mathrm{I})$ coordination polymers

Dilip Pandey ${ }^{\text {a }}$, Gopal Singh ${ }^{\text {a }}$, Shivendu Mishra ${ }^{\text {a }}$, Lydie Viau ${ }^{\text {b }}$, Michael Knorrb, Abhinav Raghuvanshi*a

Email: r.abhinav@iiti.ac.in

${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Indore, MP, India, 452020.
${ }^{\text {b }}$ Université de Franche-Comté, UMR CNRS 6213, Institut UTINAM, 16 Route de Gray, F-25000
Besançon, France.
Table of contents
\qquad
1.1 General Information... 3
1.2 Synthesis of CP1... 3
1.3 Synthesis of CP2... 4
1.4 Synthesis of CP3... 5
1.5 Synthesis of CP4.. 5
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of ligands ... 7
3. Crystallographic details.. 10
3.1 Crystal structures... 14
3.2. Macrocyclic Ring of CP1-CP4... 21
4. Photoluminescent properties of Ligands:.. 23
5. PXRD patterns of CPs.. 24
6. Thermogravimetric analysis (TGA).. 27
7. TICT phenomenon.. 28

1. EXPERIMENTAL SECTION

1.1 General Information

All the chemicals were used as received from Sigma-Aldrich. All reactions were performed under nitrogen environment and checked by TLC using Merck 60 F254 pre-coated silica gel plate (0.25 mm thickness) and the products were revealed under a UV chamber. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker 500 MHz NMR spectrometer (Bruker BioSpin AG, Faellanden, Switzerland), using CDCl_{3} as solvent and known chemical shifts of residual proton signals of deuterated solvents (for ${ }^{1} \mathrm{H}-\mathrm{NMR}$) or carbon signals of deuterated solvents (for ${ }^{13} \mathrm{C}-\mathrm{NMR}$) as the internal standard. Liquid-chromatography mass spectrometer (LCMS) was determined with an Agilent Q-TOF 6510 mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) using the direct injection method, and electrospray ionization (ESI) was used as an ionization technique. A Fluoromax-4p spectrofluorometer from Horiba JobinYvon was used to record the luminescence spectra of all the compounds (model: FM-100). OriginPro 8.1 was used to evaluate each luminescence emission spectrum. The luminescence spectra were adjusted for the instrument's spectrum sensitivity. The temperature was kept constant throughout each experiment at $25^{\circ} \mathrm{C}$.

1.2 Synthesis of CP1

Into a Schlenk tube under N_{2}, ligand $\mathbf{L}_{\mathbf{1}}(0.050 \mathrm{~g}, 0.11 \mathrm{mmol})$ was dissolved in 5 mL acetonitrile and $\mathrm{CuBr}(0.032 \mathrm{~g}, 0.22 \mathrm{mmol})$ was separately dissolved in 3 ml acetonitrile. $1-2 \mathrm{~mL}$ methanol were also added in the CuBr solution to avoid the oxidation of copper(I). After that, the CuBr solution was added to the ligand solution and the reaction mixture was stirred for 6 h at room temperature. After 6 h, formation of a pink-colored precipitate was observed. Further workup was done in open air where the precipitate was filtered and washed with 5 mL dichloromethane (2-3 times) and 5 ml MeCN to remove the unreacted reactants. The yield of CP1 is 83% (54.5 mg). When 1:4 ratio of ligand $\mathbf{L}_{\mathbf{1}}$ and CuBr was used upto 90% yield was observed. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrCuNS}_{4}$ (597.14): C, 48.27; H, 3.88; N, 2.35; S, 21.48. Found: C, 48.35; H, 3.91; N, 2.37; S, 21.51\%. IR (ATR): $1584,1496,1415,1304,1263,1173,748,690,610,525,452 \mathrm{~cm}^{-1}$.

Scheme 1 Synthesis of coordination polymer CP1.

1.3 Synthesis of CP2

Into a Schlenk under N_{2}, ligand $\mathbf{L}_{\mathbf{1}}(0.50 \mathrm{~g}, 0.11 \mathrm{mmol})$ was dissolved in 5 mL acetonitrile and $\mathrm{CuCl}(0.022 \mathrm{~g}, 0.22 \mathrm{mmol})$ was separately dissolved in 3 mL acetonitrile. Methanol ($1-2 \mathrm{~mL}$) was also added in the CuCl solution to avoid the oxidation of copper. After that, this CuCl solution was added to the ligand solution and the reaction mixture was stirred for 6 h at room temperature. After 6 h , a light pink-colored precipitate was observed, which was washed with 5 mL dichloromethane (2-3 times) and 5 ml acetonitrile to remove the unreacted reactants. Further workup was done in open air where the precipitate was filtered and washed with 5 mL dichloromethane (2-3 times) and 5 ml MeCN to remove the unreacted reactants. The yield of $\mathbf{C P 2}$ is $79 \%(48.0 \mathrm{mg})$. When 1:4 ratio of ligand \mathbf{L}_{1} and CuBr was used upto 82% yield was observed. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClCuNS}_{4}$ (552.169): C, 52.16; H, 4.19; N, 2.53; S, 23.20. Found: C, 52.13; H, 4.14; N, 2.49; S, 23.17\%. IR (ATR): 1586, 1479, 1415, 1300, 1263, 1167, 844, 749, 688, 530, $449 \mathrm{~cm}^{-1}$.

Scheme 2 Synthesis of coordination polymer CP2.

1.4 Synthesis of CP3

Into a Schlenk under N_{2}, ligand $\mathbf{L}_{\mathbf{2}}(0.060 \mathrm{~g}, 0.124 \mathrm{mmol})$ was dissolved in 5 mL acetonitrile and $\mathrm{CuBr}(0.035 \mathrm{~g}, 0.248 \mathrm{mmol})$ was separately dissolved in 3 mL acetonitrile, methanol ($1-2 \mathrm{~mL}$) was also added in the CuBr solution to avoid the oxidation of copper. Then the CuBr solution was added to the ligand solution and the reaction mixture was stirred for 6 h at room temp. After 6 h , formation of a white precipitate was observed, which was filltered-off and washed with 5 mL dichloromethane (2-3 times). The yields of CP3 is $69 \%(41.1 \mathrm{mg})$. Further workup was done in open air where the precipitate was filtered and washed with 5 mL dichloromethane (2-3 times) and 5 ml MeCN to remove the unreacted reactants. The yield of CP3 is $69 \%(41.1 \mathrm{mg})$. When 1:4 ratio of ligand \mathbf{L}_{1} and CuBr was used upto 74% yield was observed. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrCuNS}_{4}$ (625.19): C, 49.95; H, 4.35; N, 2.24; S, 20.51. Found: C, 49.92; H, 4.31; N, 2.19; S, 20.47\%. IR (ATR): $1588,1491,1413,1275,1171,754,678,610,528,452 \mathrm{~cm}^{-1}$.

Scheme 3 Synthesis of coordination polymer CP3.

1.5 Synthesis of CP4

Into a Schlenk under N_{2}, ligand $\mathbf{L}_{2}(0.050 \mathrm{~g}, 0.103 \mathrm{mmol})$ was dissolved in 5 mL acetonitrile and $\mathrm{CuCl}(0.020 \mathrm{~g}, 0.206 \mathrm{mmol})$ was separately dissolved in 3 mL acetonitrile, methanol ($1-2 \mathrm{~mL}$) was also added in the CuCl solution to avoid the oxidation of copper. After that, this CuCl solution was added to the ligand solution and the reaction mixture was stirred for 6 h at room temperature. After

6 h , an off-white-colored precipitate was observed, that was washed with 5 mL dichloromethane (2-3 times) The yield of CP4 is 52% (25.7 mg). Further workup was done in open air where the precipitate was filtered and washed with 5 mL dichloromethane (2-3 times) and 5 ml MeCN to remove the unreacted reactants. The yield of CP4 is $52 \%(25.7 \mathrm{mg})$. When 1:4 ratio of ligand \mathbf{L}_{1} and CuBr was used upto 55% yield was observed. Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClCuNS}_{4}$ (580.74): C, 53.77; H, 4.69; N, 2.41; S, 22.08. Found: C, 53.73; H, 4.67; N, 2.39; S, 22.04\%. IR (ATR): 1590, $1506,1323,1271,1167,825,762,696,513, \mathrm{~cm}^{-1}$.

Scheme 4 Synthesis of coordination polymer CP4.

2. ${ }^{1} \mathrm{H}$ NMR spectra of the ligands

Fig. S1.1 ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{L}_{1} in CDCl_{3}.

Fig. S1.2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L}_{\mathbf{1}}$ in CDCl_{3}.

Fig. S2.1 ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{L}_{2} in CDCl_{3}.

Fig. S2.2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L}_{\mathbf{2}}$ in CDCl_{3}.

3. Crystallographic details:

Single crystals suitable for single crystal X-ray crystallography were obtained by dissolving the solid samples in boiling acetonitrile and leaving it for few days at room temperature. Single crystal X-ray structural studies of crystals were performed on a CCDAgilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data for both the compounds were collected at 293 K
using a graphite-monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda \alpha=0.71073 \AA$). The strategy for the data collection was evaluated by using the CrysAlisPro CCD software. 8 The data were collected by the standard 'phi-omega scan techniques and were scaled and reduced using CrysAlisPro RED software. Using Olex2, ${ }^{1}$ the structure was solved with the SHELXT structure solution program using Intrinsic Phasing and refined with the SHELXL ${ }^{2}$ refinement package using Least Squares minimization.

Table S1. Crystallographic data of CP1, CP2, and ligand $\mathbf{L}_{\mathbf{2}}$

Compound	\mathbf{L}_{2}	CP1	CP2
CCDC No	2242123	2242124	2242127
Formula	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NS}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{BrCuNS}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClCuNS}_{4}$
Formula weight	481.72	597.12	552.66
Wavelength (\AA)	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	triclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	P-1	P-1
a/ ¢	11.4918(6)	9.1864(5)	9.1410(5)
b/ \AA	19.6484(8)	10.4799(10)	10.4411(9)
c/ \AA ¢	11.7522(7)	13.0998(10)	13.0328(8)
$\boldsymbol{\alpha} /{ }^{\circ}$	90	99.642(7)	100.066(6)
$\beta /{ }^{\circ}$	111.656(6)	103.110(5)	103.938(5)
$\gamma /{ }^{\circ}$	90	97.023(6)	95.714(6)
V/ $\AA^{\text {3 }}$	2466.3(2)	1193.94(16)	1175.54(14)
Z	4	2	2
$\rho_{\text {calcd }}\left(\mathbf{g} / \mathrm{cm}^{3}\right)$	1.297	1.661	1.561
Temperature/K	293.00	293.00	293.00
GOF	1.049	1.005	0.982
2θ range for data collection	7.016 to 49.996	6.28 to 49.992	6.35 to 49.998
Reflections collected	12620	9205	8170
Independent reflections	$\begin{gathered} 4189 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.0386\right]} \end{gathered}$	$\begin{gathered} 4203 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.0747\right]} \end{gathered}$	$\begin{gathered} 4094 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.1140\right]} \end{gathered}$
Completeness to $\theta=25.242$	99.7	99.7	98.8
Final R indices [$\mathrm{I}>\mathbf{2} \boldsymbol{\sigma}(\mathrm{I})$]	$\begin{gathered} \mathrm{R}_{1}=0.0485 \\ \mathrm{wR}_{2}=0.1138 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0491, \\ \mathrm{wR}_{2}=0.1206 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0640 \\ \mathrm{wR}_{2}=0.1603 \end{gathered}$
Final R indices	$\mathrm{R}_{1}=0.0635$,	$\mathrm{R}_{1}=0.0673$,	$\mathrm{R}_{1}=0.1045$,

[all data]	$\mathrm{wR}_{2}=0.1229$	$\mathrm{wR}_{2}=0.1294$	$\mathrm{wR}_{2}=0.1927$
Largest diff. peak/hole $/ \mathbf{e} \AA^{-3}$	$0.36 /-0.34$	$0.84 /-0.73$	$0.69 /-0.64$

Table S2. Crystallographic data of CP3, and CP4

Compound	CP3	CP4
CCDC No.	2242128	2242129
Formula	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrCuNS}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClCuNS}_{4}$
Formula Weight	625.17	580.71
Wavelength	0.71073 A	0.71073 Å
Crystal System	monoclinic	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$	$\mathrm{P} 21 / \mathrm{n}$
a/Å	10.1179(4)	10.1508(3)
b/ \AA	9.9871(4)	10.0144(3)
c/ \AA	26.3324(8)	25.8556(6)
$\boldsymbol{\alpha} /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	97.071(3)	96.520(2)
$\gamma /{ }^{\circ}$	90	90
V/ $\AA^{\mathbf{3}}$	2640.61(17)	2611.33(13)
Z	4	4
$\boldsymbol{p}_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.573	1.477
Temperature/K	293.00	293.00
GOF	1.058	1.093
2θ range for data collection	6.09 to 49.998	5.824 to 49.994
Reflections collected	28346	18333
Independent reflections	$\begin{gathered} 4620 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.0660\right]} \end{gathered}$	$\begin{gathered} 4573 \\ {\left[\mathrm{R}_{\mathrm{int}}=0.0554\right]} \end{gathered}$
Completeness to $\theta=\mathbf{2 5 . 2 4 2}$	99.7	99.9
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0498, \\ \mathrm{wR}_{2}=0.1221 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0600 \\ \mathrm{wR}_{2}=0.1643 \end{gathered}$

Final R indices [all data]	$\mathrm{R}_{1}=0.0733$, $\mathrm{wR}_{2}=0.1341$	$\mathrm{R}_{1}=0.0923$, $\mathrm{wR}_{2}=0.1843$
Largest diff. peak/hole/ $\mathbf{e} \AA^{-3}$	$0.58 /-0.71$	$0.81 /-0.68$

Table S3. Selected bond lengths (\AA) for CP1-CP4.

Compounds	Average Cu-Cu	Average Cu-X	Average Cu-S
$\mathbf{C P 1}$	2.97	2.46	2.29
$\mathbf{C P 2}$	2.92	2.35	2.28
$\mathbf{C P 3}$	2.91	2.47	2.36
$\mathbf{C P 4}$	2.92	2.35	2.35

Table S4. Selected bond angles $\left({ }^{\circ}\right)$ for CP1-CP4.

Compounds	Average $\mathbf{C u}-\mathbf{X}-\mathbf{C u}$	Average $\mathbf{S}-\mathbf{C u}-\mathbf{X}$	Average $\mathbf{S}-\mathbf{C u}-\mathbf{S}$
$\mathbf{C P 1}$	74.18	107.31	110.40
$\mathbf{C P 2}$	76.65	113.21	111.49
$\mathbf{C P 3}$	71.67	107.66	111.62
$\mathbf{C P 4}$	75.93	112.50	111.46

Table S5. The dihedral angle between the planes of different phenyl rings $\left(\mathbf{P h}_{\mathbf{S}}-\mathbf{s u b s t i t u t e d}\right.$ phenyl and $\mathbf{P h}_{\mathbf{f}}$ - free phenyl).

Compounds	$\mathbf{P h}_{\mathrm{S}}-\mathbf{P h}_{\mathrm{f}}$	$\mathbf{P h}_{\mathbf{S}}-\mathbf{P h}_{\mathbf{S}}$	$\mathbf{P h}_{\mathrm{S}}-\mathbf{P h}_{\mathrm{f}}$

CP1	85.45	86.60	55.95
CP2	84.06	85.15	57.14
CP3	81.88	88.35	44.82
CP4	81.57	88.34	44.28

3.1. Crystal structures:

Fig. S3 Molecular structure of $\mathbf{L}_{\mathbf{2}}$.

Fig. S4 (a) individual motif of $\mathbf{C P 2}$ (b) View of the 1D ribbon of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L}_{1}\right)\right]_{n}(\mathbf{C P 2})$ running along the a axis. Symmetry transformations used to generate equivalent atoms: ${ }^{1}-X, 1-Y, 2-$ $Z ;{ }^{2}+X,+Y, 1+Z ;{ }^{1}-X, 1-Y, 2-Z ;{ }^{2}+X,+Y, 1+Z ;^{3}+X,+Y,-1+Z ;{ }^{1}+X,+Y,-1+Z$.
(a)
(b)

Fig. S5 (a) individual motif of CP3 (b) View of the 1D ribbon of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Br}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathbf{L}_{\mathbf{2}}\right)\right]_{n}$ (CP3) running along the a axis. Symmetry transformations used to generate equivalent atoms:
${ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{3}-1+X,+Y,+Z ;{ }^{1}-1+X,+Y,+Z$.
(a)

Fig. S6 (a) individual motif of CP4 (b) View of the 1D ribbon of $\left[\left\{\mathrm{Cu}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \mathrm{Cu}\right\}\left(\mu_{2}-\mathrm{L}_{2}\right)\right]_{n}$ (CP4) running along the a axis. Symmetry transformations used to generate equivalent atoms:
${ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{3}-1+X,+Y,+Z ;{ }^{1}-1+X,+Y,+Z$.

Fig. S7 Molecular packing of CP1 indicating inter- and intramolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Symmetry transformations used to generate equivalent atoms: ${ }^{1}-X, 1-Y, 1-Z ;{ }^{2}+X,+Y, 1+Z^{1}+X,+Y,-$ $1+Z^{1}+X,+Y,-1+Z^{l}+X,+Y,-1+Z^{1}+X,+Y,-1+Z$

Fig. S8 Molecular packing of CP2 with $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Symmetry transformations used to generate equivalent atoms: ${ }^{1}-X, 1-Y, 2-Z ;{ }^{2}+X,+Y, 1+Z ;{ }^{1}-X, 1-Y, 2-Z ;{ }^{2}+X,+Y, 1+Z ;{ }^{3}+X,+Y,-1+Z$ ${ }^{1}+X,+Y,-1+Z$

Fig. S9 Molecular packing of CP3 with $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Symmetry transformations used to generate equivalent atoms: $\quad{ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ; \quad{ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ; \quad{ }^{3}-$ $1+X,+Y,+Z ; \quad{ }^{1}-1+X,+Y,+Z$

Fig. S10 Molecular packing of CP4 with C-H $\cdots \pi$ interactions. Symmetry transformations used to generate equivalent atoms: ${ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{1} 1-X, 1-Y, 1-Z ;{ }^{2} 1+X,+Y,+Z ;{ }^{3}-$ $1+X,+Y,+Z ;{ }^{1}-1+X,+Y,+Z$.
3.2. Dimensions of the 32-membered macrocyclic rings occurring in CP1-CP4:

Fig. S11 Macrocyclic ring of CP1.
Fig. S12 Macrocyclic ring of CP2.

Fig. S13 Macrocyclic ring of CP3.

Fig. S14 Macrocyclic ring of CP4.

4. Photoluminescent properties of ligands

Fig. S15 Room temperature emission spectra of $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ upon excitation at 365 nm .
5. Powder X-ray diffraction (PXRD) pattern of CPs: Powder X-ray diffraction (PXRD) studies were performed at room temperature in air to confirm the CPs' bulk identity. We may infer that the bulk material and the crystals are homogeneous since the experimental PXRD patterns correlate well with the simulated data generated from X-ray single-crystal data. Different crystal orientations in the powder samples account for the discrepancy reflection intensities seen between the simulated and observed patterns.

Fig. S16.1 Comparison of simulated and experimental PXRD patterns of CP1 and CP2.

Fig. S16.2 Comparison of simulated and experimental PXRD patterns of CP3 and CP4.

5.1. PXRD patterns of pristine and ground CPs

Fig. S17 PXRD patterns of pristine and ground CPs.
6. Thermogravimetric analysis (TGA) : Temperature gradient (TG) analyses experiments were performed in the range of $30-800^{\circ} \mathrm{C}$, using a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen flow. The thermogravimetric curves (shown in Figure S18) demonstrate that no solvent molecules are present in the CP's (1-4) structure. TGA performed on all the compounds confirms their stability up to $200^{\circ} \mathrm{C}$. It is reported that a slight increase in weight in the TGA curve between the temperature range $30-200{ }^{\circ} \mathrm{C}$ is observed due to the buoyancy effect. As the temperature increases, the density of the gas (fluid) decreases, resulting in a slight mass gain during the analysis. This effect is prominent in the lower temperature range; as the temperature increases, the buoyancy effect decreases.

Fig.S18 TGA graph of CP1, CP2, CP3, and CP4.

7. TICT Phenomenon

Fig. S19 Emission spectra of \mathbf{L}_{1} (a) and (b) \mathbf{L}_{2} in THF and THF/hexane mixtures ($c=1 \mathrm{mM}$) with increasing fractions of hexane; formation of TICT state.

1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, Journal of applied crystallography, 2009, 42, 339-341.
2. G. M. Sheldrick and T. R. Schneider, in Methods in enzymology, Elsevier, 1997, vol. 277, pp. 319-343.
