Support Information

Optimized crystal orientation for enhanced reaction kinetics and reversibility of SnSe/NC hollow nanospheres towards

high-rate and long-cyclic lithium/sodium storage

Huihui Song^{1,#}, Qiang Zhou^{1,#}, Zhicheng Song¹, Kun Tian¹, Chaohui Guan¹,

Zhengyuan Fang¹, Gengyang Yuan¹, Mi Lu¹, Dong Wei², Xiaodan Li^{1,*}

1 Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials

Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.

2 College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.

#:these authors contribute equally

*E-mail: <u>xiaodan_li@yeah.net</u>

Fig. S1. The DSC curve of SnSe/NC.

Fig. S2. Structural characterization of SnSe/NC. (a) Thermogravimetric analysis TGA curve. (b) Raman spectrum. (c, d)Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution.

Fig. S3. XPS full spectrum of SnSe/NC hollow nanospheres.

Fig. S4. (a-c) CV curves for the first three turns of CV at 0.1 mv s⁻¹ scanning rate for SnSe/NC-550, SnSe/NC-650 and SnSe/NC-750. (d-f) GCD curves of three crystal surface characteristics at a current density of 300 mA g⁻¹.

Fig. S5. (a-c) CV curves of SnSe/NC-550, SnSe/NC-650, and SnSe/NC-750.

Rs Rf Rct				
Sample	before (after) cycling	before (after) cycling	before (after) cycling	
SnSe/NC-550	4.65 (13.12)	1.99 (60.84)	229.30 (9.25)	
SnSe/NC-650	3.60 (42.10)	63.66 (18.25)	76.47 (90.39)	
SnSe/NC-750	3.99 (21.95)	21.77 (14.56)	195.70 (45.39)	

 Table S1. The fitted values of impedance for SnSe/NC-550, SnSe/NC-650 and SnSe/NC-750 before and after cycling.

Fig. S6. GITT curves in the three electrodes at discharge/charge states.

GITT measurements: To activate the battery, five cycles at a current density of 300 mA g^{-1} were conducted on the LANHE tester, ending with the the charge process. To obtain the discharge curves of GITT, repeated discharge-relaxation processes at a current density of 50 mA g^{-1} were performed on the electrochemical station (CHI 660). The cut-off voltage is 0.01 V and all steps take 10 min. Similarly, the symmetrical charge curves were obtained by repeated charge-relaxation processes until a cut-off voltage of 3 V.

Calculation of D_{Li^+} is according to the following formula:

$$D = \frac{4}{\pi\tau} \left(\frac{\mathbf{n}_{\rm m} \mathbf{V}_{\rm m}}{\mathbf{S}}\right)^2 \left(\frac{\Delta E_{\rm s}}{\Delta E_{\rm t}}\right)^2$$

Where D is the diffusion coefficient, τ is relaxation time, n_m is mole number, V_m is the molar volume of active material, S is electrode area, ΔE_s is the voltage change caused by an impulse, ΔE_t is the voltage change of galvanostatic charge-discharge.

Fig. S7. The first three turns of the CV curve for SnSe/NC at a scan rate of 0.1 mV s⁻¹.

Fig. S8. The discharge/charge curves for the SnSe/NC-550 electrode at a current density of 100 mA g^{-1} .

Fig. S9. EIS curves of SnSe/NC electrodes with three crystal features before cycling.

Fig. S10. GITT curves of sodium ions in the electrode at discharge/charge states.

	Rs	Rf	Rct
Sample	before(after) cycling	before(after) cycling	before (after) cycling
SnSe/NC-550	5.27 (5.45)	512.50 (448.50)	146.40 (505.40)
SnSe/NC-650	0.94 (8.38)	274.60 (454.00)	596.90 (776.00)
SnSe/NC-750	4.90 (5.94)	651.20 (224.3)	28.49 (971.60)

 Table S2. The fitted values of impedance for SnSe/NC-550, SnSe/NC-650 and SnSe/NC-750

 before and after cycling

Fig. S11. Morphology and composition analysis of SnSe/NC-550 after 100 cycles. (a) XRD patterns. (b,c) SEM of electrode and powder in LIBs. (d,e) SEM of electrode and powder in SIBs