Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Turn-on fluorescence of ruthenium pyrene complexes in response to bovine serum albumin

Saša Opačak, Margareta Pernar Kovač, Anamaria Brozovic^a, Ivo Piantanida^{*}, Srećko I. Kirin^{*}

Contents

Compounds	4
NMR spectra	5
P ¹ H NMR (300 MHz, CDCl ₃)	5
L ¹ H NMR (300 MHz, CDCl ₃)	6
L APT NMR (151 MHz, CDCl ₃)	7
L ³¹ P NMR (243 MHz, CDCl ₃)	8
1 ¹ H NMR (300 MHz, CDCl ₃)	9
1 APT NMR (151 MHz, CDCl ₃)	9
2 ³¹ P NMR (243 MHz, CDCl ₃)	11
2 ¹ H NMR (300 MHz, CDCl ₃)	11
2 ¹³ C NMR (151 MHz, CDCl ₃)	12
2 ³¹ P NMR (243 MHz, CDCl ₃)	13
UV/Vis Experiments	14
Variable concentration (and temperature) spectra of 1 in water	14
Variable concentration spectra od ${f 1}$ in DMSO	14
Variable concentration (and temperature) spectra of 2 in DMSO	15
Variable concentration (and temperature) spectra of 2 in Na-cacodylate buffer	15
dTM measurements	16
Fluorescence experiments	17
Variable concentration spectra of ${f 1}$ in DMSO	17
Excitation spectra of ${f 1}$	17
Variable concentration (and temperature) spectra of 2 in DMSO	18
Variable concentration (and temperature) spectra of 2 in Na-cacodylate buffer	18
BSA titration of 1	
BSA titration of 2	19
Time resolved fluorescence measurements	20
ctDNA titration of ${f 1}$	21
ctDNA titration of 2	21
Competition experiments ES283 titration of ctDNA + ethidium bromide	22
Competition experiments ES282 titration of ctDNA + ethidium bromide	22
CD spectroscopy	23
Titration of 1 with ctDNA	23
Titration of 2 with ctDNA	23
Biology	24
Toxicity on HeLa cells	24

Compounds

Figure s1 Compounds presented in this paper

NMR spectra

P ¹H NMR (300 MHz, CDCl₃)

L¹H NMR (300 MHz, CDCl₃)

L APT NMR (151 MHz, CDCl₃)

L³¹P NMR (243 MHz, CDCl₃)

1¹H NMR (300 MHz, CDCl₃)

1 APT NMR (151 MHz, $CDCl_3$)

2 ³¹P NMR (243 MHz, CDCl₃)

2 ¹H NMR (300 MHz, CDCl₃)

2¹³C NMR (151 MHz, CDCl₃)

2 ³¹P NMR (243 MHz, CDCl₃)

UV/Vis Experiments

Variable concentration (and temperature) spectra of 1 in water

Figure s2: Left: A DMSO solution of **1** was added (**c(1)** =9.99x10⁻⁴) to 1 ml of water, heating and cooling was done at the highest concentration measured, 1 cm path length, T = 25, additions of 2 μ l °C. **Right:** Linear fit at 350 nm.

Variable concentration spectra od 1 in DMSO

Figure s3: Left: A DMSO solution of **1** was added (**c(1)** = 6.46×10^{-4}) to a 2 ml solution of DMSO, 1 cm path length, T = 25 °C. **Right:** Linear fit at 346 nm.

Variable concentration (and temperature) spectra of 2 in DMSO

Figure s4: Left: A DMSO solution of **2** was added (**c(2)** =9.51x10⁻⁴) to a 2 ml solution of DMSO, 1 cm path length, T = 25 °C. **Right:** Linear fit at 346 nm.

Variable concentration (and temperature) spectra of 2 in Na-cacodylate buffer

Figure s5: Left: A DMSO solution of **2** was added (**c(2)** =9.68x10⁻⁴) to a 2 ml solution of Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), heating and cooling was done at the highest concentration measured, 1 cm path length, T = 25 °C. **Right:** Linear fit at 350 nm.

dTM measurements

Figure s6 dTM measurements of ctDNA and mixtures of ctDNA with **1** and **2**. r(compound/ctDNA) = 0.3. c(ctDNA) = 2 x 10⁻⁵ M. Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length. T_m(ctDNA) = 80.7 °C, T_m(ctDNA + **1**) could not be determined, T_m(ctDNA + **2**) = 78.5 °C.

Fluorescence experiments Variable concentration spectra of **1** in DMSO

Figure s7: Left: A DMSO solution of **1** was added (**c(2)**=1.045x10⁻³) to a 2 ml solution of DMSO, 1 cm path length, T = 25 °C, λ_{exc} = 340 nm, additions of 3-5 µl. **Right:** Linear fit at 378 nm.

Excitation spectra of 1

Figure s8: Excitation spectra of **1**. A DMSO solution of **1** was added (**c(1)**=1.045x10⁻³) to a 2 ml solution of DMSO, 1 cm path length, T = 25 °C, , additions of 3-5 μ l.**Left:** λ_{em} = 378 nm **Right:** λ_{em} = 398 nm.

Variable concentration (and temperature) spectra of 2 in DMSO

Figure s9: Left: A DMSO solution of **2** was added (**c(2)**=9.51x10⁻⁴) to a 2 ml solution of DMSO, 1 cm path length, T = 25 °C, λ_{exc} = 340 nm. **Right:** Linear fit at 398 nm.

Variable concentration (and temperature) spectra of 2 in Na-cacodylate buffer

Figure s10: 2 was added (**c(2)** =9.68x10⁻⁴) to a 2 ml solution of Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), λ_{exc} = 340 nm, 1 cm path length, T = 25 °C.

BSA titration of 1

Figure s11 Left: Fluorimetric titration of **1** with BSA (c(BSA) = 1 mM), M, $c_0(1) = 5.23 \times 10^{-6}$, $\lambda_{exc} = 340$ nm, Na-cacodylate buffer (pH = 7.05, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, BSA additions of 1 µl, spectra are corrected for dillution. **Right:** Changes in fluorescence of **1** at 380 nm during the titration.

BSA titration of **2**

Figure s12 Left: Fluorimetric titration of **2** with BSA (c(BSA) = 1 mM), M, $c_0(2)$ =4.64x10⁻⁶, λ_{exc} = 340 nm, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, BSA additions of 1-2 µl, spectra are corrected for dillution. **Right:** Changes in fluorescence of **2** at 380 nm during the titration.

Time resolved fluorescence measurements

For **1** and **2** in NaCaco, only samples with BSA added were successfully measured, samples without BSA had very low fluorescence.

Compound (solvent)	λ _{max} / nm	ε / M⁻¹cm⁻¹	Φ _f ª	λ_{em}/nm^b	au / ns (non- degassed)	χ2	au / ns (degassed) ^c	χ2
1 (DMSO)	346	52981	0.17	-	-	-	-	-
1 (H ₂ O)	350	17945	-	-	-	-	-	-
1+BSA (NaCaco)	-	-	-	419	12.9 (17%) 41.6 (31%) 181.5 (53%)	1.084	15.3 (61%) ^d 123.7(39%)	1.539
2 (DMSO)	346	87723	0.18	-	-	-	-	-
2 (H ₂ O)	350	50766	-	-	-	-	-	-
2+BSA (NaCaco)	-	-	-	419	27.2(36 %) 169.1(64%)	1. 194	22.1(51%) 130.8(49%)	1.165
L (NaCaco)	350	28640	0.61	470	-	-	32.2 (43%) 72.6 (57%)	1.003
A ¹ (NaCaco)	342	62596	0.15	377, 398, 418	94.0 (100%)	1.068	2.5 (1%) 100.3(99.2%)	1.060

Table s1. Measured relaxation times τ and quantum yields for **1**, **2** and **L**.

^a Absolute fluorescence quantum yield was determined by integrating sphere SC-30, Edinburgh Inst., for Argon purged solutions, by λ_{exc} = 340 nm ^b Pulsing diode excitation at 340 nm. ^c Degassed by ultrasonic bath for 30 min,^d the values could not be determined reliably.

1 R. J. Lakowicz, *Principles of Fluorescence Spectroscopy*, Springer, New york, 3rd edn., 2006.

ctDNA titration of 1

Figure s15 Left: Fluorimetric titration of **1** with ctDNA, c(ctDNA) = 2.11×10^{-3} M, **c**₀(**1**) = 4.89×10^{-6} , $\lambda_{\text{exc}} = 340$ nm, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, additions of 5 μ l, spectra are not corrected for dillution. **Right:** Corresponding UV spectra.

ctDNA titration of 2

Figure s16 Left: Fluorimetric titration of **2** with ctDNA, c(ctDNA) = 2.11×10^{-3} M, **c**₀(**1**) = 4.92×10^{-6} , $\lambda_{\text{exc}} = 340$ nm, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, additions of 5 μ l, spectra are not corrected for dillution. **Right:** Corresponding UV spectra.

Figure S17 Left: Ethidium Bromide displacement assay, $\lambda_{exc} = 505$ nm, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), $c_0(ctDNA) = 4.99 \times 10^{-5}$ M, $c_0(EtdBr) = 4.96 \times 10^{-6}$ M, 1 cm path length, T = 25 °C, c (2) = 2.02 x 10⁻³ M – additions of 2-10 µl, baseline was subtracted and the spectra were corrected for dilution. **Right:** Changes in fluorescence of EtdBr at 600 nm during the titration, IDA₅₀(2) = 0.050.

Competition experiments ES282 titration of ctDNA + ethidium bromide

Figure S18 Left: Ethidium Bromide displacement assay, $\lambda_{exc} = 505$ nm, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), $c_0(ctDNA) = 5.27x10^{-5}$ M, $c_0(EtdBr) = 4.96x10^{-6}$ M, 1 cm path length, T = 25 °C, c (1) = 2.98 x 10⁻³ M – additions of 2-10 µl, baseline was subtracted and the spectra were corrected for dilution. **Right:** Changes in fluorescence of EtdBr at 600 nm during the titration, IDA₅₀(1) = 0.016.

CD spectroscopy Titration of **1** with ctDNA

Figure s19 Titration of ctDNA with **1.** $c_0(ctDNA)=1.95 \times 10^{-5}$, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, baseline was subtracted from each spectrum.

Titration of 2 with ctDNA

Figure s20 Titration of ctDNA with **2.** $c_0(ctDNA) = 1.97 \times 10^{-5}$, Na-cacodylate buffer (pH = 7.0, I = 0.05 mol dm⁻³), 1 cm path length, T = 25 °C, baseline was subtracted from each spectra.

Biology

Toxicity on HeLa cells

	He	Fibroblasts	
Compound	IC ₅₀ (μM) ± SD	IC ₅₀ (μM) ± SD λ = 300 nm	IC ₅₀ (μM) ± SD
1	5.13 ± 1.10	3.24±0.4	12 ± 2 .13
2	12.50 ± 0.50	8.75±1.8	11.8 ± 1.1

Table s2. IC_{50} values of compounds **1** and **2** measured on HeLa cells with and without 300 nm irradiation and on fibroblasts.