Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2023

New class of RSO₂-NHC ligands and Pd/RSO₂-NHC complexes with tailored electronic properties and high performance in catalytic C-C and C-N bonds formation

Dmitry V. Pasyukov,^a Maxim A. Shevchenko,^a Alexander V. Astakhov,^a Mikhail E. Minyaev,^b Yu Zhang,^c Victor M. Chernyshev^{*,a}, Valentine P. Ananikov^{*,a,b}
^a Platov South-Russian State Polytechnic University (NPI), Prosveschenya 132, 346428 Novocherkassk, Russian Federation
^b Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia.
^c Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Wushan Street, Guangzhou, 510640, China E-mail: chern13@yandex.ru, val@ioc.ac.ru

Table of contents:

S1. General information and materials	S2
S2. Extended DFT data	S4
S3. Single Crystal X-Ray Diffraction Data	S7
S4. ¹ H, ¹³ C NMR spectra	S13
S5. Cartesian coordinates	S48
S6. Literature references	S60

S1. General information and materials

General Procedures. Solvents were purified and dried according to standard methods and stored over activated 3 Å molecular sieves prior to use. Column chromatography was conducted on silica gel 60 (230–400 mesh, Merck). Glassware was dried at 120 °C in an oven for at least 3 h before use.

Instrumentation. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker Avance NEO 300 spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C in DMSO- d_6 or CDCl₃. The ¹H and ¹³C NMR chemical shifts are reported relative to the solvent signals as internal standards: δ 2.50 (DMSO- d_6) or 7.26 (CDCl₃) for ¹H and δ 39.5 (DMSO- d_6) or 77.2 (CDCl₃) for ¹³C.

High-resolution mass spectra (HRMS) were obtained on a Bruker maXis QTOF instrument (Bruker Daltonik GmbH, Bremen, Germany) equipped with an electrospray ionization (ESI) ion source. HRMS measurements were conducted in positive (+) MS ion mode (HV Capillary: 4500 V; Spray Shield: -500 V) with a scan range of m/z 50 – 1500. External calibration of the mass spectrometer was performed with the use of a low-concentration tuning mix solution, Agilent. Direct syringe injection was implemented for the analyzed solutions at a 3 μ L min⁻¹ flow rate. In HRMS measurements, nitrogen was applied as the nebulizer gas (0.4 bar) and dry gas (4.0 L min⁻¹). The dry temperature was 250 °C. All the spectra were recorded with 1 Hz frequency and processed using Bruker Data Analysis 4.0 software.

All geometry optimizations were performed by the PBE1PBE method^{1, 2} using the def2-SVP basis set³ in the Gaussian 09⁴ software package. For further validation of the energetics and electronic properties of the ligands and palladium complexes, single-point calculations were performed on the PBE1PBE/Def2-SVP optimized geometries using hybrid GGA DFT functional PBE1PBE employing a valence triple- ζ -type basis set Def2-TZVP⁵. The solvent effects (CHCl₃, $\varepsilon = 4.71$) were evaluated implicitly by a self-consistent reaction field (SCRF) approach using the IEF PCM continuum solvation model^{6, 7}. The convergence criteria were used as default, and the vibrational analysis was also carried out under standard conditions (1 atm., 298.15 K).

The percent buried volume $%V_{bur}$ was obtained from topographic steric maps analysis of model palladium complexes using the SambVca 2.1 web tool⁸ (parameters: sphere radius 3.50 Å; mesh spacing 0.05; bond radii scaled by 1.17; H atoms are excluded). The ETS-NOCV analysis was performed with the Multiwfn program⁹. The molecular structures and isosurfaces of frontier orbitals, ETS-NOCV pairs and MESP densities were visualized using Chemcraft¹⁰ software.

Materials. Compounds 1a-r were synthesized as described in the literature.¹¹ All other chemicals were purchased from commercial sources.

Figure S1. Structures of starting compounds 1a-r.

S2. Extended DFT data

Figure S2. Plots and energy values (in eV) of the HOMO and LUMO calculated at PBE1PBE/def2tzvp//PBE1PBE/def2svp in CHCl₃ solution (IEF-PCM).

Figure S3. Molecular electrostatic potential isosurface at $-50 \text{ kcal} \cdot \text{mol}^{-1}$ of model NHC-ligands calculated at PBE1PBE/def2tzvp//PBE1PBE/def2svp in CHCl₃ solution (IEF-PCM). The black dots represent the location of the V_{\min} points. V_{\min} and V_c values are given in kcal·mol⁻¹.

Complex	BDE, kcal/mol
9 a, Z = H	53.9
9b , Z = SPh	53.9
9c , Z = SO ₂ Ph	53.6

Figure S4. Pd-C_(NHC) bond dissociation energy (BDE) calculated at PBE1PBE/def2tzvp//PBE1PBE/def2svp in molecules 9a-c.

S3. Single crystal X-ray diffraction data

X-ray diffraction data for (**IPr**)**PdSPh** and **3a** were collected at 100 K on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix6000HE area detector (kappa geometry, shutterless ω scan technique) using monochromatized Mo K_{α}-radiation. The intensity data were integrated and analytically corrected for absorption and decay by the CrysAlisPro program.¹² The structures were solved by direct methods using SHELXT¹³ and refined by the full-matrix least-squares method on F^2 using SHELXL-2018¹⁴ in the OLEX2 program.¹⁵ All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions (C-H distance = 0.950 Å for aromatic, 0.980 Å for methyl, 0.990 Å for methylene and 1.000 Å for tertiary hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters taken as $U_{iso}(H)=1.5U_{eq}(C)$ for methyl groups and $U_{iso}(H)=1.2U_{eq}(C)$ otherwise. The disordered fragments and molecules were modeled by applying similarity constraints on anisotropic displacement parameters on similar atoms and by constraining similar distances to be equal within the deviation of 0.003 Å.

Crystal data, data collection and structure refinement details for **3a** are summarized in Table S1. The structures have been deposited at the Cambridge Crystallographic Data Center with the reference CCDC numbers 2255010; they also contain the supplementary crystallographic data. These data can be obtained free of charge from the CCDC *via* <u>https://www.ccdc.cam.ac.uk/structures/</u>

Identification code	3a
Empirical formula	$C_{39}H_{47}Cl_4N_3O_2PdS$
Formula weight	870.05
Temperature, K	100.0(2)
Wavelength, Å	0.71073
Crystal system	Monoclinic
Space group	$P2_1/c$
Unit cell dimensions	
a, Å	11.69119(14)
b, Å	19.42369(17)
c, Å	18.9969(2)
β, °	107.4290(13)
Volume, Å ³	4115.87(8) Å ³
Z	4
Density (calculated), g/cm ³	1.404
Absorption coefficient (μ), mm ⁻¹	0.797
F(000)	1792
Crystal size, mm	0.75×0.60×0.48
θ range for data collection, $^\circ$	2.105-33.750
Index ranges	$-18 \le h \le 18,$
	$-29 \le k \le 30,$
	$-29 \le 1 \le 29$
Reflections	
Collected	97310
Independent [R _{int}]	16385 [0.0246]
Observed (I>2o(I))	15026
Completeness to θ_{full} / θ_{max}	0.999 / 0.994
T _{max} / T _{min}	0.745 / 0.652
Data / restraints / parameters	16385 / 1013 / 774
Goodness-of-fit on F^2	1.075
R1/wR2 (I>2σ(I))	0.0286 / 0.0691
R1/wR2 (all data)	0.0323 / 0.0704
Extinction coefficient	0.00084(9)
$\Delta \rho_{min}$ / $\Delta \rho_{max}$, \bar{e} ·Å ⁻³	1.219 / -0.509
CCDC number	2255010

 Table S1.
 Crystal data, data collection and structure refinement details for 3a

The structure of **3a**.

Figure S5. The structure of **3a** (p=50%). The molecule of the complex was modeled as disordered over three positions (the disorder ratio is 0.498(2):0.289(2):0.2132(19)). The lattice chloroform molecule is also disordered over three positions (0.845(3):0.070(2):0.085(3)).

Figure S6. Three components for the disorder of molecule 3a (p=50%) with atom site occupancies of 0.498(2) (top), 0.289(2) (middle) and 0.2132(19) (bottom).

Pd1-Cl1	2,2975(14)	C5-C6	1.402(2)	C21-C25	1.512(2)
Pd1-Cl2	2.3032(14)	C5-C10	1.516(3)	C22-C23	1.532(2)
Pd1-C1	1.9678(17)	C6-C7	1 374(3)	C22-C24	1 530(2)
Pd1-N3	2.0974(18)	C7-C8	1 375(3)	C25-C26	1 533(2)
S1-01	1.4415(18)	C8-C9	1.373(2)	C25-C27	1.530(2)
S1-02	1.4323(17)	C9-C13	1.105(2) 1.514(3)	C28-C29	1.390(2)
S1-C2	1 7591(18)	C10-C11	1 536(2)	C28-C33	1 390(2)
S1-C28	1 7664(19)	C10-C12	1 533(2)	C29-C30	1.394(3)
N1-C1	1.7607(19) 1.3647(19)	C13-C14	1.535(2) 1.536(2)	C30-C31	1.376(3)
N1-C3	1.3017(1)	C13-C15	1.530(2) 1.533(2)	C31-C32	1.370(3) 1.380(3)
N1-C4	1.370(2) 1.449(2)	C16-C17	1.333(2) 1 400(2)	C32-C33	1.300(3) 1.392(2)
C1-N2	1.77(2) 1 3582(10)	C16-C21	1.400(2) 1.307(2)	N3-C34	1.352(2) 1 3/1(2)
N2-C2	1.3302(17) 1 4016(19)	C10-C21 C17-C18	1.377(2) 1 401(2)	N3-C38	1.341(2) 1 340(2)
N2-C16	1.4010(1)	C17-C10	1.401(2) 1.511(2)	$C_{34}C_{35}$	1.340(2)
$C_{2}C_{3}$	1.450(2) 1.353(2)	C17 - C22 C18 - C19	1.311(2) 1.375(2)	C35-C36	1.379(3)
$C_2 - C_3$	1.333(2) 1.403(2)	$C_{10} C_{20}$	1.373(2) 1.374(2)	C36 C37	1.379(3) 1.378(3)
$C_{4}C_{9}$	1.403(2) 1.400(2)	$C10^{-}C20$ C20 $C21$	1.374(2) 1.402(2)	C37 C38	1.370(3) 1.302(2)
Pd1A Cl1A	$\frac{1.400(2)}{2.208(2)}$	C_{20}	$\frac{1.402(2)}{1.402(3)}$	$\frac{C_{37}C_{30}}{C_{21}\Lambda}$	$\frac{1.332(2)}{1.512(3)}$
Pd1A CDA	2.290(2) 2.304(2)	C5A C10A	1.402(3) 1.515(3)	$C_{21}A - C_{23}A$	1.512(3) 1.532(2)
Pd1A C1A	2.304(2) 1.067(2)	C5A-C10A	1.313(3) 1.373(3)	C22A-C23A	1.532(2) 1.532(2)
Dd1A N2A	1.907(2)	C0A-C7A	1.373(3) 1.272(3)	C22A-C24A	1.332(2) 1.522(2)
$\Gamma UIA-INSA$	2.097(2)	C^{A}	1.372(3) 1.402(3)	C25A-C20A	1.332(2) 1.521(2)
SIA-OIA	1.442(2) 1.422(2)	C0A C12A	1.405(5) 1.514(2)	C23A-C27A	1.351(2) 1.200(2)
SIA-OZA	1.432(2) 1.750(2)	CIA CIIA	1.314(3) 1.525(2)	$C_{20}A - C_{20}A$	1.390(3)
SIA-C2A	1.739(2) 1.766(2)	CIUA-CIIA	1.555(2) 1.524(2)	C28A-C35A	1.388(3) 1.204(2)
SIA-C28A	1.700(2) 1.265(2)	C10A-C12A	1.334(2) 1.526(2)	$C_{29}A$ - $C_{30}A$	1.394(3) 1.276(2)
NIA-CIA	1.303(2) 1.276(2)	C13A-C14A	1.330(2) 1.524(2)	C_{21A} C_{22A}	1.370(3) 1.276(2)
NIA-CJA	1.370(2) 1.440(2)	CISA-CISA	1.334(2) 1.400(2)	$C_{22}A$ $C_{22}A$	1.370(3) 1.202(2)
NIA-C4A C1A N2A	1.449(5)	C16A - C1/A	1.400(2) 1.209(2)	$C_{32}A$ - $C_{33}A$	1.393(3) 1.241(2)
CIA-NZA	1.338(2) 1.402(2)	C10A-C21A	1.398(2)	NJA-CJ4A	1.341(3) 1.241(2)
N2A-C2A	1.402(2)	C17A-C18A	1.402(2)	N3A-C38A	1.341(3)
N2A-C16A	1.456(2)	CI/A-C22A	1.515(3)	C34A-C35A	1.392(3)
C_{2A} - C_{3A}	1.353(2) 1.402(2)	C18A-C19A	1.3/5(3)	C35A-C36A	1.3/9(3)
C4A-C5A	1.405(2)	C19A-C20A	1.3/3(3)	C30A-C3/A	1.379(3)
C4A-C9A	1.400(2)	C20A-C2IA	1.403(2)	C3/A-C38A	1.392(3)
PdIB-CIIB	2.299(2)	C5B-C6B	1.402(3)	C21B-C25B	1.510(3)
PdIB-CI2B	2.304(2)	C5B-C10B	1.512(3)	C22B-C23B	1.532(2)
PdIB-CIB	1.96/(2)	C6B-C/B	1.3/3(3)	C22B-C24B	1.531(2)
POID-NOD	2.096(2)	C/B-C8B	1.3/3(3)	C25B-C26B	1.532(2)
SIB-OIB	1.442(2)	C8B-C9B	1.403(3)	C25B-C27B	1.531(2)
SIB-02B	1.432(2)	C9B-C13B	1.514(3)	C28B-C29B	1.389(3)
SIB-C2B	1.759(2)	CIOB-CIIB	1.535(2)	C28B-C33B	1.388(3)
SIB-C28B	1.765(3)	CI0B-CI2B	1.534(2)	C29B-C30B	1.393(3)
NIB-CIB	1.365(3)	CI3B-CI4B	1.536(2)	C30B-C31B	1.377(3)
NIB-C3B	1.376(3)	CI3B-CI5B	1.536(2)	C31B-C32B	1.3/6(3)
NIB-C4B	1.450(3)	CI6B-CI/B	1.399(2)	C32B-C33B	1.393(3)
CIB-N2B	1.358(3)	CI6B-C2IB	1.398(2)	N3B-C34B	1.340(3)
N2B-C2B	1.401(3)	CT/B-C18B	1.402(3)	N3B-C38B	1.338(3)
N2B-C16B	1.456(3)	CT/B-C22B	1.511(3)	C34B-C35B	1.392(3)
C2B-C3B	1.354(3)	C18B-C19B	1.373(3)	C35B-C36B	1.379(3)
C4B-C5B	1.401(3)	C19B-C20B	1.372(3)	C36B-C37B	1.378(3)
C4B-C9B	1.401(3)	C20B-C21B	1.401(3)	C37B-C38B	1.391(3)

Table S2.Selected bond distances in 3a, in Å.

Cl1-Pd1-Cl2	174.4(4)	Cl1A-Pd1A-Cl2A	173.2(6)	Cl1B-Pd1B-Cl2B	178.1(5)
C1-Pd1-Cl1	95.2(3)	C1A-Pd1A-Cl1A	94.1(5)	C1B-Pd1B-Cl1B	90.5(5)
C1-Pd1-Cl2	85.2(3)	C1A-Pd1A-Cl2A	86.4(4)	C1B-Pd1B-Cl2B	88.3(5)
C1-Pd1-N3	172.2(3)	C1A-Pd1A-N3A	175.5(5)	C1B-Pd1B-N3B	178.6(4)
N3-Pd1-Cl1	89.1(2)	N3A-Pd1A-Cl1A	90.4(4)	N3B-Pd1B-Cl1B	89.1(3)
N3-Pd1-Cl2	91.16(18)	N3A-Pd1A-Cl2A	89.2(3)	N3B-Pd1B-Cl2B	92.1(3)

Table S3.Selected bond angles about the Pd atom in 3a, °.

S4.¹H and ¹³C NMR spectra

Figure S7. ¹H NMR spectrum of 2a (DMSO- d_6 , 300 MHz)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S8. ¹³C NMR spectrum of 2a (DMSO- d_6 , 75 MHz)

Figure S1.¹H NMR spectrum of 2b (DMSO-*d*₆, 300 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S2.¹³C NMR spectrum of 2b (DMSO- d_6 , 75 MHz)

Figure S4.¹³C NMR spectrum of 2c (DMSO- d_6 , 75 MHz)

Figure S5.¹H NMR spectrum of 2d (DMSO-*d*₆, 300 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S6.¹³C NMR spectrum of 2d (DMSO-*d*₆, 75 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S8.¹³C NMR spectrum of 2e (DMSO- d_6 , 75 MHz)

Figure S9.¹H NMR spectrum of 2f (DMSO- d_6 , 300 MHz)

Figure S10. ¹³C NMR spectrum of **2f** (DMSO- d_6 , 75 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S12. ¹³C NMR spectrum of 2g (DMSO- d_6 , 75 MHz)

Figure S13. ¹H NMR spectrum of **2h** (DMSO- d_6 , 300 MHz)

ppm

Figure S14. ¹³C NMR spectrum of **2h** (DMSO- d_6 , 75 MHz)

Figure S16. 13 C NMR spectrum of 2i (DMSO- d_6 , 75 MHz)

Figure S17. ¹H NMR spectrum of **2j** (DMSO- d_6 , 300 MHz)

Figure S18. ¹³C NMR spectrum of 2j (DMSO- d_6 , 75 MHz)

¹³C NMR spectrum of 2k (DMSO- d_6 , 75 MHz) Figure S20.

Figure S21. ¹H NMR spectrum of 2l (DMSO- d_6 , 300 MHz)

Figure S22. ¹³C NMR spectrum of **2l** (DMSO- d_6 , 75 MHz)

Figure S23. ¹H NMR spectrum of **2m** (DMSO- d_6 , 300 MHz)

Figure S24. 13 C NMR spectrum of 2m (DMSO- d_6 , 75 MHz)

Figure S25. ¹H NMR spectrum of 2n (DMSO- d_6 , 300 MHz)

Figure S26. ¹³C NMR spectrum of **2n** (DMSO- d_6 , 75 MHz)

ppm

Figure S28. 13 C NMR spectrum of 20 (DMSO- d_6 , 75 MHz)

Figure S29.

¹H NMR spectrum of **2p** (DMSO- d_6 , 300 MHz)

Figure S30. ¹³C NMR spectrum of 2p (DMSO- d_6 , 75 MHz)

Figure S31. ¹H NMR spectrum of 2q (DMSO- d_6 , 300 MHz)

Figure S32. ¹³C NMR spectrum of 2q (DMSO- d_6 , 75 MHz)

Figure S33. ¹H NMR spectrum of $2\mathbf{r}$ (DMSO- d_6 , 300 MHz)

Figure S34. ¹³C NMR spectrum of 2r (DMSO- d_6 , 75 MHz)

Figure S35. ¹H NMR spectrum of 3a (CDCl₃, 300 MHz)

Figure S36. 13 C NMR spectrum of **3a** (CDCl₃, 75 MHz)

Figure S37. ¹H NMR spectrum of **3b** (CDCl₃, 300 MHz)

Figure S38. ¹³C NMR spectrum of 3b (CDCl₃, 75 MHz)

Figure S39. ¹H NMR spectrum of 3c (CDCl₃, 300 MHz)

Figure S40. ¹³C NMR spectrum of 3c (CDCl₃, 75 MHz)

Figure S41. ¹H NMR spectrum of 3d (CDCl₃, 300 MHz)

Figure S42. ¹³C NMR spectrum of 3d (CDCl₃, 75 MHz)

Figure S43. ¹H NMR spectrum of 3e (CDCl₃, 300 MHz)

Figure S44. 13 C NMR spectrum of **3e** (CDCl₃, 75 MHz)

Figure S45. ¹H NMR spectrum of 3f (CDCl₃, 300 MHz)

Figure S46. ¹³C NMR spectrum of 3f (CDCl₃, 75 MHz)

Figure S47. ¹H NMR spectrum of 3g (CDCl₃, 300 MHz)

S38

Figure S49. ¹H NMR spectrum of **8a** (CDCl₃, 300 MHz)

Figure S50. ¹³C NMR spectrum of 8a (CDCl₃, 75 MHz)

Any the second of the second o

90.24

Figure S58. 13 C NMR spectrum of 8c (CDCl₃, 75 MHz)

— 179.32

Figure S62. Non ¹H decoupled ¹³C NMR spectrum of **1b** (CDCl₃, 75 MHz)

Figure S64. ¹H NMR spectrum of **12** (CDCl₃, 300 MHz)

2.29

7.11 7.09

7.19

Figure S66. ¹H NMR spectrum of $17 (CDCl_3, 300 \text{ MHz})$

7.38 7.37 7.35

6

7.97.96

S5. Cartesian coordinates of DFT optimized structures

Coordinates of the optimized structure of IPr

05			
IPr E	= -1159.0377	755	
С	0.6773420	-0.0337000	1.8510090
С	-0.6771940	0.0327890	1.8510970
Ν	1.0583110	-0.0526600	0.5172580
Ν	-1.0583020	0.0524340	0.5174000
С	-0.0000410	0.0001120	-0.3410620
С	2.4233310	-0.1123410	0.0927650
С	-2.4233480	0.1123130	0.0930290
С	-3.0101390	1.3717990	-0.1352640
С	-4.3475810	1.4034410	-0.5432560
С	-5.0750100	0.2290370	-0.7123130
С	-4.4740520	-1.0029290	-0.4782920
С	-3.1378500	-1.0885040	-0.0712120
С	-2.4989720	-2.4467660	0.1528580
С	-2.2155290	2.6581270	-0.0037930
С	3.1376390	1.0885660	-0.0715890
С	4.4738420	1.0031660	-0.4787210
С	5.0749950	-0.2287230	-0.7126160
С	4.3477580	-1.4032330	-0.5434310
С	3.0103120	-1.3717630	-0.1354590
С	2.2158060	-2.6581610	-0.0040580
С	2.4986020	2.4467490	0.1525010
Н	-4.8286500	2.3653260	-0.7352420
Н	-5.0529560	-1.9197220	-0.6173030
Н	-1.4738810	-2.2750290	0.5131210
С	-3.2330770	-3.2527930	1.2251990
С	-2.3903590	-3.2239530	-1.1606990
Н	-1.3080120	2.4266330	0.5747180
Н	5.0525950	1.9200390	-0.6178270
Н	4.8289820	-2.3650560	-0.7353270
Н	1.3084770	-2.4268700	0.5748350
С	1.7624270	-3.1417940	-1.3844970
С	2.9711950	-3.7503130	0.7515340
Н	1.4735460	2.2748810	0.5128000

Н	-1.3922880	0.0665930	2.6692150
Н	1.3925260	-0.0678900	2.6690320
Н	-6.1193610	0.2753320	-1.0313890
Н	6.1193520	-0.2748840	-1.0316930
С	-2.9706710	3.7500320	0.7524190
С	-1.7625850	3.1421680	-1.3842200
С	3.2326550	3.2528570	1.2248190
С	2.3898510	3.2239360	-1.1610440
Н	-2.7173190	-4.2085750	1.4082190
Н	-3.2800930	-2.7046440	2.1787360
Н	-4.2658690	-3.4881260	0.9223150
Н	-1.8745950	-4.1839970	-1.0000640
Н	-3.3843710	-3.4450390	-1.5819380
Н	-1.8235540	-2.6532160	-1.9113350
Н	1.1430300	-4.0486390	-1.2950890
Н	1.1691610	-2.3683810	-1.8946590
Н	2.6292040	-3.3848000	-2.0204780
Н	2.3194200	-4.6241370	0.9063580
Н	3.8554120	-4.1009040	0.1961620
Н	3.3100650	-3.4000290	1.7385940
Н	-2.3189020	4.6238700	0.9071940
Н	-3.8551690	4.1006810	0.1975320
Н	-3.3090720	3.3994460	1.7395320
Н	-1.1432090	4.0490190	-1.2947410
Н	-1.1694100	2.3689150	-1.8947320
Н	-2.6295340	3.3853040	-2.0199180
Н	2.7167890	4.2085750	1.4078640
Н	3.2797740	2.7047080	2.1783520
Н	4.2654060	3.4883150	0.9218950
Н	1.8739900	4.1839220	-1.0003800
Н	3.3838230	3.4451350	-1.5823180
Н	1.8230790	2.6531450	-1.9116620

Coordinates of the optimized structure of **9a**

77 **9a** I

9a E=	-1535.094119	5	
Pd	-0.0033470	1.1668640	-0.0974120
Ν	-0.0030420	3.2613030	-0.2438670
С	1.1489360	3.9506720	-0.2838280
С	-1.1533910	3.9526570	-0.2945500
С	1.1957000	5.3379630	-0.3740000
С	-1.1969450	5.3400330	-0.3851350
С	0.0001970	6.0510030	-0.4256440
Н	2.0647280	3.3571170	-0.2409770
Н	-2.0707100	3.3609660	-0.2602000
Н	2.1621110	5.8446380	-0.4027290
Н	-2.1621990	5.8483340	-0.4228850
Н	0.0014600	7.1413640	-0.4964530
С	0.6789220	-2.9596790	0.2691620
С	-0.6767450	-2.9613280	0.2678650
Ν	1.0702940	-1.6383170	0.1377030
Ν	-1.0708870	-1.6409460	0.1350880
С	-0.0013480	-0.7890450	0.0531230
С	2.4368530	-1.2190860	0.0996300
С	-2.4377660	-1.2246730	0.0841780
С	-3.0882440	-0.8744280	1.2824340
С	-4.4296670	-0.4851650	1.2042980
С	-5.0973010	-0.4475800	-0.0156090
С	-4.4332870	-0.8039070	-1.1851020
С	-3.0926530	-1.2026210	-1.1615840
С	-2.3834230	-1.5603020	-2.4552060
С	-2.3819900	-0.8962170	2.6251710
С	3.0904970	-0.9227010	1.3105840
С	4.4318290	-0.5306810	1.2474340
С	5.0970990	-0.4395630	0.0290410

С	4.4304730	-0.7442310	-1.1534740
С	3.0898050	-1.1434270	-1.1450000
С	2.3812720	-1.4503980	-2.4517180
С	2.3840290	-0.9953260	2.6513990
Н	-4.9602030	-0.2027220	2.1174700
н	-4.9663120	-0.7683580	-2.1385200
н	-1.3919590	-1.9577860	-2.1908870
С	-3.1188870	-2.6517670	-3.2334460
С	-2.1529970	-0.3120820	-3.3096390
H	-1.3546610	-1.2503050	2.4530020
Н	4.9637730	-0.2881880	2.1711900
н	4.9616770	-0.6682300	-2.1056150
н	1.3802670	-1.8338620	-2.2031940
С	2.1823940	-0.1757970	-3.2740590
C	3,1006700	-2.5360510	-3.2530820
н	1.3630410	-1.3623050	2.4688490
н	-1.3907530	-3.7765140	0.3466940
Н	1.3947860	-3.7730760	0.3496480
н	-6.1450120	-0.1385050	-0.0552770
н	6.1447840	-0.1291500	0.0008700
c	-3 0482830	-1 8703690	3 5981660
c	-2.2751350	0.5110350	3,2144650
c	3 0647140	-1 9829790	3 6001170
c	2 2524740	0 3945410	3 2762270
н	-2 5409510	-2 9409150	-4 1252730
н	-3 2699270	-3 5533/30	-2 6198/120
н	-4 1078970	-2 3124570	-3 5805500
н	-1 6016220	-0 5682980	-4 2285520
н	-3 1081970	0 1501950	-3 6074710
н	-1 5656290	0 4346440	-2 7513420
н	1 6268050	-0 3952470	-4 1998620
н	1 6107310	0 5685270	-2 6963890
н	3 1483480	0.2720960	-3 5589630
н	2 5284550	-2 7846490	-4 1607370
н	4 1024050	-2 2103750	-3 5760470
н	3 2217400	-3 4588260	-2 6648320
н	-2 4844250	-1 9162830	4 5432230
н	-4.0773870	-1.5612940	3.8421750
н	-3 0948180	-2 8881220	3 1808060
н	-1 7153230	0 4899720	4 1631470
н	-1 7453080	1 1797670	2 5170260
н	-3 2691250	0.9396910	3 4216790
н	2 5003880	-2 0618840	4 5426620
н	2.0000000	-7 9889030	3 1570250
н	4 0882/150	-1 6639170	3 85/1810
н	1 6880120	0 3/12010	A 2214420
н	3 23000/10	0.3412310	3 1082010
н	1.7163720	1.0723450	2.5929340
•••	100/20		

Coordinates of the optimized structure of PhS-IPr

PhS	-IPr E=-1787.95	5593137	
С	0.9909110	-3.0550810	0.4227130
С	-0.3621840	-3.2022100	0.4399300
Ν	1.2287080	-1.6958650	0.2509540
Ν	-0.8795880	-1.9212920	0.2762690
С	0.0773010	-0.9647370	0.1547910
С	2.5416500	-1.1310890	0.1814410
С	-2.2833800	-1.6502490	0.2257030
С	-2.9522660	-1.2999100	1.4141260
С	-4.3235050	-1.0350140	1.3354570
С	-5.0041840	-1.1255490	0.1250620
С	-4.3230690	-1.4832440	-1.0334410
С	-2.9503010	-1.7540950	-1.0086360
С	-2.2236660	-2.1137370	-2.2917840
С	-2.2155600	-1.1610950	2.7336180
С	3.1678040	-0.7152980	1.3714480
С	4.4509590	-0.1664840	1.2740780
С	5.0853330	-0.0387020	0.0429900
С	4.4474340	-0.4612290	-1.1191710
С	3.1658660	-1.0193700	-1.0757840
С	2.4699360	-1.4431990	-2.3556210
С	2.4917130	-0.8306000	2.7248500
Н	-4.8692400	-0.7507970	2.2383070
Н	-4.8674370	-1.5494650	-1.9790690
Н	-1.1868900	-2.3675490	-2.0255820
С	-2.8331170	-3.3401210	-2.9715520
С	-2.1669080	-0.9130570	-3.2385200
Н	-1.2433050	-1.6649830	2.6209010
Н	4.9612930	0.1702040	2.1800820
Н	4.9546880	-0.3534630	-2.0809590
Н	1.5805720	-2.0246720	-2.0697370

С	1.9766010	-0.2162650	-3.1264280
С	3.3430470	-2.3471670	-3.2248020
Н	1.5143420	-1.3100390	2.5662400
Н	-0.9819160	-4.0868230	0.5514560
Н	-6.0758960	-0.9146480	0.0851310
н	6.0870920	0.3949850	-0.0118670
С	-2.9446820	-1.8362810	3.8942810
С	-1.9298200	0.3132190	3.0307190
С	3.2885820	-1.7188050	3.6817320
С	2.2233700	0.5505480	3.3256920
Н	-2.2496510	-3.6134860	-3.8647690
Н	-2.8463640	-4.2090810	-2.2958200
Н	-3.8682210	-3.1538180	-3.2994210
Н	-1.5918250	-1.1606750	-4.1449400
н	-3.1760370	-0.6041460	-3.5557100
н	-1.6853590	-0.0511480	-2.7530200
Н	1.4251580	-0.5212090	-4.0301810
Н	1.3047060	0.3928910	-2.5035020
Н	2.8189610	0.4197590	-3.4436540
н	2.7761450	-2.6931860	-4.1032030
н	4.2361700	-1.8223980	-3.5992510
н	3.6794310	-3.2331510	-2.6650680
н	-2.3268550	-1.7955860	4.8048450
н	-3.8990770	-1.3389490	4.1290010
н	-3.1598840	-2.8937870	3.6770220
н	-1.3545260	0.4173170	3.9646520
Н	-1.3484300	0.7690900	2.2157700
Н	-2.8670750	0.8818530	3.1450640
Н	2.7505510	-1.8345770	4.6359010
Н	3.4460920	-2.7204500	3.2536030
Н	4.2764060	-1.2873430	3.9101020
Н	1.6787020	0.4571550	4.2786270
Н	3.1614580	1.0915080	3.5299410
Н	1.6174350	1.1672340	2.6451290
S	2.3208340	-4.1958550	0.5599770
С	1.3976370	-5.7117010	0.7395820
С	1.0321730	-6.1582100	2.0133830
С	1.0873570	-6.4730050	-0.3914520
С	0.3436110	-7.3626880	2.1509040
С	0.3996650	-7.6771770	-0.2458290
С	0.0271530	-8.1212500	1.0232950
Н	1.2888930	-5.5596740	2.8903250
н	1.3866080	-6.1180760	-1.3801940
н	0.0572340	-7.7121920	3.1457450
н	0.1572280	-8.2725950	-1.1293170
н	-0.5097420	-9.0663700	1.1348890

Coordinates of the optimized structure of **9b**

9b E=-2164.01204195

Pd	0.0372910	1.0433840	-0.0847800
Ν	-0.1127380	3.1252500	-0.3239870
С	0.9838230	3.8939280	-0.4251700
С	-1.3123160	3.7256690	-0.3910370
С	0.9255560	5.2731530	-0.5962920
С	-1.4606600	5.0982030	-0.5606130
С	-0.3205730	5.8915690	-0.6660550
Н	1.9418720	3.3731090	-0.3656900
Н	-2.1820180	3.0705370	-0.3051880
Н	1.8508280	5.8471400	-0.6731260
Н	-2.4614980	5.5312390	-0.6084910
Н	-0.4018140	6.9729190	-0.8001900
С	0.9963060	-3.0177090	0.4019470
С	-0.3608750	-3.1109730	0.3993750
Ν	1.3012230	-1.6737190	0.2389970
Ν	-0.8364780	-1.8169210	0.2389030
С	0.1696800	-0.9002710	0.1358810
С	2.6388160	-1.1710150	0.1766150
С	-2.2307540	-1.5036810	0.1927430
С	-2.9161940	-1.2818510	1.4019980
С	-4.2868960	-1.0106800	1.3336920
С	-4.9499880	-0.9656920	0.1114710
С	-4.2503150	-1.1917520	-1.0695280
С	-2.8788920	-1.4669490	-1.0559200
С	-2.1395810	-1.6996780	-2.3598260
С	-2.2113520	-1.2980940	2.7459110
С	3.2698330	-0.7674570	1.3687220
С	4.5826110	-0.2936530	1.2800610
С	5.2415810	-0.2279170	0.0565910
С	4.5982740	-0.6394260	-1.1061970
С	3.2860450	-1.1221920	-1.0728400
С	2.5989080	-1.5434150	-2.3585130
С	2.5703690	-0.8205860	2.7135100

Н	-4.8445030	-0.8282080	2.2559600
Н	-4.7798870	-1.1519820	-2.0249460
Н	-1.0860420	-1.8952170	-2.1112620
С	-2.6743350	-2.9257710	-3.1016740
C	-2.1660620	-0.4476860	-3.2373950
н	-1 1670560	-1 5954450	2 5686850
н	5 0975060	0.0325080	2 1874100
н	5 12/17130	-0 5826160	-2.0622060
ц	1 6212120	-1 0606350	-2.0022000
с С	2 2267090	-1.9090330	2.0070430
c	2.5207960	-0.5506750	-3.2310920
C 	3.3806970	-2.6308590	-3.0905350
н	1.5680600	-1.2432240	2.5475030
н	-1.0154380	-3.9709800	0.4987610
Н	-6.0215120	-0.7522230	0.0791240
Н	6.2674260	0.1464580	0.0090670
С	-2.8227260	-2.3236200	3.7012660
С	-2.1794380	0.1026660	3.3602170
С	3.3019470	-1.7381600	3.6946360
С	2.3727790	0.5842550	3.2846710
Н	-2.0908360	-3.1057950	-4.0184160
Н	-2.6143180	-3.8311430	-2.4780460
Н	-3.7267700	-2.7932260	-3.4001910
н	-1.5739980	-0.6061870	-4.1527940
н	-3.1924160	-0.1877690	-3.5433970
н	-1.7367180	0.4095080	-2.6944980
н	1 7869710	-0 6355730	-4 1619790
н	1 7112620	0.0000700	-2 7171750
н	3 26/7960	0.4100400	-3 5632780
 	2 22/00/0	2 0621050	2 0970060
н Ц	4 2625020	-2.9021950	-3.9879000
	4.5055020	-2.2065740	-3.4561900
	3.5408030	-3.5074100	-2.4519760
н	-2.2549210	-2.3552200	4.6444970
н	-3.8661/10	-2.0755820	3.9534850
Н	-2.8140700	-3.3348330	3.2658250
Н	-1.6212340	0.0953980	4.3100830
Н	-1.6862900	0.8122750	2.6769990
Н	-3.1956710	0.4736810	3.5705890
Н	2.7429340	-1.8119960	4.6409410
Н	3.4135230	-2.7525210	3.2818750
Н	4.3078130	-1.3574180	3.9345950
Н	1.8140550	0.5396410	4.2331390
Н	3.3370160	1.0782560	3.4871510
Н	1.8026880	1.2092370	2.5786790
S	2.2701140	-4.2167230	0.5656860
С	1.2685140	-5.6638540	0.8578010
С	0.8942580	-5.9985530	2.1631700
C	0.9017990	-6.4829440	-0.2141490
c	0.1399400	-7.1482900	2.3912880
Ċ	0.1486840	-7.6327220	0.0222900
c	-0 2329440	-7 9644920	1 3224190
й	1 1960070	-5 3565010	2 9928210
ч	1 2076010	-6 2157010	-1 2281200
Ц	-0 1525170	-0.213/010	2 /107220
п ц	0.1202020	-1.4055550	0.0140400
	-U.130083U	-0.2/33/10	
П.	-0.8210140	-0.00084/0	1.2040240

Coordinates of the optimized structure of $\ensuremath{\text{PhSO}_2}\xspace$ -IPr

PhSO2-IPr E=-1938.29326321

С	1.2973410	-2.9786550	0.3418320
С	-0.0430020	-3.2033650	0.3994500
Ν	1.4637750	-1.6139170	0.1365000
Ν	-0.6325040	-1.9699310	0.2290110
С	0.2731940	-0.9593220	0.0628420
С	2.7368270	-0.9564980	0.0323530
С	-2.0523630	-1.7743690	0.2475240
С	-2.6909380	-1.5793760	1.4862300
С	-4.0804750	-1.4168350	1.4808980
С	-4.8018080	-1.4403920	0.2918850
С	-4.1442940	-1.6258570	-0.9197630
С	-2.7570880	-1.8002430	-0.9698740
С	-2.0613600	-1.9764680	-2.3066930
С	-1.9277330	-1.5391890	2.7981240
С	3.3370550	-0.4671940	1.2065830
С	4.5617790	0.1944020	1.0772050
С	5.1627710	0.3534540	-0.1675380
С	4.5504450	-0.1484540	-1.3108450
С	3.3240060	-0.8170770	-1.2373360
С	2.6396150	-1.3121170	-2.4977230
С	2.6654920	-0.5955830	2.5609330
Н	-4.6066660	-1.2647380	2.4265480
Н	-4.7198020	-1.6341050	-1.8487600
Н	-1.0020220	-2.1953730	-2.1062240
С	-2.6278300	-3.1543800	-3.1003040
С	-2.1071730	-0.6774990	-3.1145460
Н	-0.8552020	-1.6076950	2.5630750
Н	5.0544010	0.5921640	1.9669420
Н	5.0335370	-0.0176990	-2.2816920
Н	1.8691390	-2.0361030	-2.1917860
С	1.9309610	-0.1518230	-3.2019180
С	3.5908760	-2.0481260	-3.4387120

Н	1.9253820	-1.4069100	2.4842250
Н	-0.6053730	-4.1216840	0.5454250
Н	-5.8866030	-1.3089370	0.3092670
Н	6.1210310	0.8731570	-0.2467540
С	-2.2816180	-2.7343860	3.6855980
С	-2.1391190	-0.2133650	3.5306610
С	3.6361940	-0.9879720	3.6719790
С	1.9060410	0.6909100	2.8963700
н	-2.0592040	-3.2954940	-4.0326430
н	-2.5742340	-4.0913440	-2.5248360
Н	-3.6808590	-2.9913280	-3.3795380
н	-1.5553430	-0.7908990	-4.0609900
н	-3.1436740	-0.3963380	-3.3613390
Н	-1.6544900	0.1524350	-2.5517720
Н	1.3891290	-0.5099180	-4.0919840
Н	1.2081290	0.3357610	-2.5307020
н	2.6570560	0.6088490	-3.5317750
н	3.0304280	-2.4630840	-4.2911280
н	4.3623410	-1.3804260	-3.8539920
Н	4.0894230	-2.8781770	-2.9181400
н	-1.6904290	-2.7140180	4.6146250
н	-3.3466430	-2.7244360	3.9678870
н	-2.0797430	-3.6892140	3.1760190
н	-1.5215990	-0.1771570	4.4417970
н	-1.8592640	0.6402980	2.8955800
н	-3.1887490	-0.0791370	3.8368310
Н	3.0846170	-1.1608860	4.6093930
н	4.1722170	-1.9122160	3.4125420
н	4.3768470	-0.1984340	3.8755480
н	1.3735930	0.5897850	3.8558060
н	2.5976550	1.5448210	2.9814520
Н	1.1678110	0.9251090	2.1147090
S	2.6314020	-4.1303860	0.4891270
0	3.2949700	-4.2357790	-0.8108090
0	3.4167100	-3.7705260	1.6701490
С	1.7828700	-5.6564400	0.8173530
С	1.5064110	-6.0027470	2.1401470
С	1.4373130	-6.4807430	-0.2532230
С	0.8472470	-7.2038270	2.3909690
С	0.7786820	-7.6790970	0.0137190
С	0.4826810	-8.0358370	1.3305020
Н	1.8152400	-5.3424890	2.9529670
н	1.6930590	-6.1848150	-1.2725350
н	0.6231540	-7.4952070	3.4194810
н	0.5009410	-8.3404800	-0.8098950
н	-0.0326270	-8.9776150	1.5336070

Coordinates of the optimized structure of **9c**

90

9c E=-2314.3487229 Pd 0.0712120 1.0

Pd	0.0712120	1.0049840	-0.0648800
Ν	-0.2483670	3.0735320	-0.3043150
С	0.7886380	3.9112520	-0.4650010
С	-1.4871910	3.5908870	-0.3214950
С	0.6300900	5.2808330	-0.6487020
С	-1.7352220	4.9479930	-0.4992400
С	-0.6568170	5.8134280	-0.6671320
Н	1.7813910	3.4562450	-0.4452120
Н	-2.3064350	2.8811320	-0.1876620
Н	1.5100190	5.9141250	-0.7752280
Н	-2.7639440	5.3128500	-0.5050050
Н	-0.8166020	6.8848840	-0.8097590
С	1.3344630	-2.9653560	0.3506230
С	-0.0116530	-3.1547530	0.3850610
Ν	1.5519250	-1.6030850	0.1976630
Ν	-0.5776740	-1.9098210	0.2546490
С	0.3658690	-0.9158390	0.1371280
С	2.8438250	-0.9800780	0.1242600
С	-1.9930740	-1.6907500	0.2475560
С	-2.6488950	-1.4642630	1.4714790
С	-4.0364530	-1.2894990	1.4402270
С	-4.7401950	-1.3395890	0.2414240
С	-4.0661620	-1.5647180	-0.9545870
С	-2.6797400	-1.7479420	-0.9792520
С	-1.9632290	-1.9515120	-2.3008540
С	-1.9042690	-1.3789990	2.7912320
С	3.4476620	-0.5377380	1.3165580
С	4.6930710	0.0892840	1.2150250
С	5.3135700	0.2602180	-0.0180910
С	4.6995110	-0.1975520	-1.1786930
С	3.4521740	-0.8289980	-1.1359260
С	2.7800040	-1.2699450	-2.4232470
С	2.7790730	-0.6820880	2.6715930
Н	-4.5749720	-1.1078940	2.3737220
Н	-4.6277340	-1.5959170	-1.8916230
Н	-0.9113180	-2.1859090	-2.0787770
С	-2.5336230	-3.1260280	-3.0959280

С	-1.9686840	-0.6549590	-3.1134450
Н	-0.8406620	-1.5741280	2.5882440
Н	5.1862770	0.4505070	2.1203030
н	5.1970720	-0.0593270	-2.1413980
н	1.9394920	-1.9258230	-2.1494220
C	2.1986640	-0.0600880	-3.1593940
c	3.7094690	-2.0832020	-3.3227360
н	1.9390220	-1.3836660	2.5527190
н	-0 5980730	-4.0628210	0 4914100
н	-5 8242660	-1 20051/0	0.3388810
н	6 2880/00	0 7521860	-0.07/5930
\hat{c}	0.2000400	2 1202000	2 7950200
c	-2.3652110	-2.4303000	3.7630390
C	-1.9937030	0.0314390	3.3708500
C	3.7150860	-1.2758290	3.7239920
C	2.1964200	0.6578890	3.1281930
н	-1.9503650	-3.2824560	-4.0167390
Н	-2.5057150	-4.0600350	-2.5135040
Н	-3.5785490	-2.9487320	-3.3962350
Н	-1.3978900	-0.7805370	-4.0473020
Н	-2.9947930	-0.3551890	-3.3818240
Н	-1.5078270	0.1604650	-2.5317540
Н	1.6564550	-0.3808540	-4.0636010
Н	1.4987380	0.4923210	-2.5096060
Н	2.9978980	0.6315540	-3.4728140
Н	3.1573640	-2.4454040	-4.2043840
Н	4.5527930	-1.4799580	-3.6948400
Н	4.1094460	-2.9539180	-2.7847640
Н	-1.7920040	-2.3885330	4.7128760
Н	-3.4402130	-2.2912820	4.0590820
н	-2.2824430	-3.4540780	3.3721720
н	-1.4036070	0.1013680	4.3043900
н	-1.5998560	0.7712590	2.6617500
н	-3 0338780	0 3024690	3 6194970
н	3 1666630	-1 4432930	4 6645290
н	4 1240630	-2 2380090	3 3853500
ц	4.5520010	-0.6001830	3.9550050
 Ц	4.5559010	0.0001830	4 0901420
п	2 0021240	1 1060300	2 2682100
 Ц	1 /01/070	1.4009300	2 2827000
c II	2 615/260	1.0408810	2.3827090
о О	2.0154500	-4.1009500	0.4515540
0	3.2566090	-4.2932780	-0.8590560
0	3.4358430	-3.8941720	1.62/8/80
C	1.6910170	-5.6674640	0.7548100
С	1.4085430	-6.0284930	2.0723710
С	1.2937180	-6.4481860	-0.3302880
С	0.6907570	-7.1994910	2.3032310
С	0.5768390	-7.6171190	-0.0832310
С	0.2748680	-7.9877970	1.2282980
Н	1.7568280	-5.4021550	2.8960140
Н	1.5545750	-6.1417650	-1.3451950
Н	0.4604530	-7.5018090	3.3272060
Н	0.2575730	-8.2444760	-0.9183390
Н	-0.2864080	-8.9062530	1.4158120

S6. Literature references

1. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865-3868.

2. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110* (13), 6158-6170.

3. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7* (18), 3297-3305.

4. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*, Gaussian, Inc.: Wallingford, CT, USA, 2009.

5. Schäfer, A.; Huber, C.; Ahlrichs, R., Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. *The Journal of Chemical Physics* **1994**, *100* (8), 5829-5835.

6. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. *Chemical Reviews* **2005**, *105* (8), 2999-3094.

7. Klamt, A.; Moya, C.; Palomar, J., A Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach. *J. Chem. Theory Comput.* **2015**, *11* (9), 4220-4225.

8. Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L., Towards the online computer-aided design of catalytic pockets. *Nature Chemistry* **2019**, *11* (10), 872-879.

9. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. *Journal of Computational Chemistry* **2012**, *33* (5), 580-592.

10. Zhurko, G. A. *Chemcraft - graphical program for visualization of quantum chemistry computations*, Version 1.8 (buid 622b); Zhurko, G. A.: Ivanovo, Russia, 2005.

11. Pasyukov, D. V.; Shevchenko, M. A.; Shepelenko, K. E.; Khazipov, O. V.; Burykina, J. V.; Gordeev, E. G.; Minyaev, M. E.; Chernyshev, V. M.; Ananikov, V. P., One-Step Access to Heteroatom-Functionalized Imidazol (in)ium Salts. *Angewandte Chemie International Edition* **2022**, *61* (9), e202116131.

12. CrysAlisPro. Version 1.171.42. *Rigaku Oxford Diffraction* **2022**.

13. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71* (1), 3-8.

14. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallographica Section C* **2015**, *71* (1), 3-8.

15. Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* **2009**, *42* (2), 339-341.